Have a personal or library account? Click to login
Cloud Computing and Extreme Learning Machine for a Distributed Energy Consumption Forecasting in Equipment-Manufacturing Enterprises Cover

Cloud Computing and Extreme Learning Machine for a Distributed Energy Consumption Forecasting in Equipment-Manufacturing Enterprises

Open Access
|Jan 2017

References

  1. 1. Du, Y.-W. The Design and Implementation of Energy Management and Data Correction System in Iron and Steel Enterprise. Central South University, 2010.
  2. 2. Re, A.-A. Improving Electric Load Forecasts Using Network Committees. – Electric Power Syst. Res., Vol. 74, 2005, pp. 83-94.10.1016/j.epsr.2004.09.007
  3. 3. Hahn, H., S. Meyer-Nieberg, S. Pickl. Electric Load Forecasting Methods: Tools for Decision Making. – Eur. J. Oper. Res., Vol. 199, 2009, No 3, pp. 902-907.10.1016/j.ejor.2009.01.062
  4. 4. Chow, T. W. S., C. T. Leung. Neural Network Based Short-Term Load Forecasting Using Weather Compensation. – IEEE Trans. Power Syst., Vol. 11, 1996, No 4, pp. 1736-1742.10.1109/59.544636
  5. 5. Hong, W. C. Electric Load Forecasting by Support Vector Model. – Appl. Math. Model, Vol. 33, 2009, No 5, pp. 2444-2454.10.1016/j.apm.2008.07.010
  6. 6. Metaxiotis, K., A. Kagiannas, D. Askounis, J. Psarras. Artificial Intelligence in Short Term Electric Load Forecasting: A State-of-the-Art Survey for the Researcher. – Energy Convers Manage, Vol. 44, 2003, No 9, pp. 1525-1534.10.1016/S0196-8904(02)00148-6
  7. 7. Aung, Z., M. Toukhy, J. Williams, A. Sanchez, S. Herrero. Towards Accurate Electricity Load Forecasting in Smart Grids. – In: 4th International Conference on Advances in Databases, Knowledge, and Data Applications, DBKDA, 2012. p. 51-57.
  8. 8. Hernandez, L., C. Baladrón, J. M. Aguiar, B. Carro, A. J. Sanchez-Esguevillas, J. Lloret. Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks. – Energies, Vol. 6, 2013, No 3, pp. 1385-1440.10.3390/en6031385
  9. 9. Bunn, D. W., E. D. Farmer. Comparative Models for Electrical Load Forecasting. Chichester, NY, Wiley, 1985.
  10. 10. Javed, F., N. Arshad, F. Wallin, I. Vassileva, E. Dahlquist. Forecasting for Demand Response in Smart Grids: An Analysis on Use of Anthropologic and Structural Data and Short Term Multiple Loads Forecasting. – Appl Energy, 2012, No 96, pp. 150-160.10.1016/j.apenergy.2012.02.027
  11. 11. Soliman, S. A., A. M. Alkandari. Electrical Load Forecasting: Modeling and Model Construction. Burlington, MA, Butterworth-Heinemann, 2010.
  12. 12. Tian, Z.-Q., X.-B. Huang. Overview of Data Mining Technologies for Industrial Processes. – Control Engineering of China, 2009, No 16, pp. 120-123 (in Chinese).10.1179/tcr.2009.16.1.120
  13. 13. Kumar, U., V. K. Jain. Time Series Models (Grey-Markov). Grey Model with Rolling Mechanism and Singular Spectrum Analysis to Forecast Energy Consumption India. – Energy, Vol. 35, 2010, No 4, pp. 1709-1716.10.1016/j.energy.2009.12.021
  14. 14. Braun, M. R., H. Altan, S. B. M. Beck. Using Regression Analysis to Predict the Future Energy Consumption of a Supermarket in the UK Applied. – Energy, 2014, No 130, pp. 305-313.10.1016/j.apenergy.2014.05.062
  15. 15. Zhou, P., B. W. Ang, K. L. Poh. A Trigonometric Grey Prediction Approach to Forecasting Electricity Demand. – Energy, Vol. 31, 2006, No 14, pp. 2839-2847.10.1016/j.energy.2005.12.002
  16. 16. Wu, Z., J. Xu. Predicting and Optimization of Energy Consumption Using System Dynamics-Fuzzy Multiple Objective Programming in World Areas. – Energy, 2013, No 49, pp. 19-31.10.1016/j.energy.2012.10.030
  17. 17. Yu, F., Z. Xiao. A Short-Term Load Forecasting Model of Natural Gas Based on Optimized Genetic Algorithm and Improved BP Neural Network. – Applied Energy, 2014, No 134, pp. 102-113.10.1016/j.apenergy.2014.07.104
  18. 18. Ekonomou, L. Greek Long-Term Energy Consumption Prediction Using Artificial Neural Networks. – Energy, 2010, No 35, pp. 512-517.10.1016/j.energy.2009.10.018
  19. 19. Arash, G., S. M. R. Kazemi, F. Mehmanpazir, M. M. Nakhostin. A Cooperative Ant Colony Optimization-Genetic Algorithm Approach for Construction of Energy Demand Forecasting Knowledge-Based Expert Systems. – Knowledge-Based Systems, 2013, No 39, pp. 194-206.10.1016/j.knosys.2012.10.017
  20. 20. Lu, C. N., H. T. Wu, S. Vemuri. Neural Network Based Short Term Load Forecasting. – IEEE Trans. Power Syst., Vol. 8, 1993, No 1, pp. 336-342.10.1109/59.221223
  21. 21. Hippert, H. S., C. E. Pedreira, R. C. Souza. Neural Networks for Short-Term Load Forecasting: A Review and Evaluation. – IEEE Trans. Power Syst., Vol. 16, 2001, No 1, pp. 44-55.10.1109/59.910780
  22. 22. Pai, P.-F., W.-C. Hong. Forecasting Regional Electricity Load Based on Recurrent Support Vector Machines with Genetic Algorithms. – Electric Power Syst. Res., 2005, No 74, pp. 417-425.10.1016/j.epsr.2005.01.006
  23. 23. Pai, P. F., W. C. Hong. Support Vector Machines with Simulated Annealing Algorithms in Electricity Load Forecasting. – Energy Convers Manage, Vol. 46, 2005, No 17, pp. 2669-2688.10.1016/j.enconman.2005.02.004
  24. 24. Alfares, H. K., M. Nazeeruddin. Electric Load Forecasting: Literature Survey and Classification of Methods. – Int. J. Syst. Sci., Vol. 33, 2002, No 1, pp. 23-34.10.1080/00207720110067421
  25. 25. Moghram, I., S. Rahman. Analysis and Evaluation of Five Short-Term Load Forecasting Techniques. – IEEE Trans. Power Syst., Vol. 4, 1989, No 4, pp. 1484-1491.10.1109/59.41700
  26. 26. Amjady, N. Short-Term Bus Load Forecasting of Power Systems by a New Hybrid Method. – IEEE Trans. Power Syst., Vol. 22, 2007, No 1, pp. 333-341.10.1109/TPWRS.2006.889130
  27. 27. Huang, G. B., Q. Y. Zhu, C. K. Siew. Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Networks. – 2004 IEEE International Joint Conference on Neural Networks, Budapest, Hungary, IEEE, 2004, pp. 985-990.
  28. 28. Mao, Li., Y. Wang, X. Liu et al. Short-Term Power Load Forecasting Method Based on Improved Extreme Learning Machine. – Power System Protection and Control, Vol. 40, 2012, No 20, pp. 140-144 (in Chinese).
  29. 29. Zhang, S., J. Liu, B. Zhao et al. Cloud Computing-Based Analysis on Residential Electricity Consumption Behavior. – Power System Technology, Vol. 37, 2013, No 6, pp. 1542-1546 (in Chinese).
  30. 30. Song, Y., G. Zhou, Y. Zhu. Present Status and Challenges of Big Data Processing in Smart Grid. – Power System Technology, Vol. 37, 2013, No 4, pp. 927-935 (in Chinese).
  31. 31. Li, J., H. Wei. A Multi-Agent System to Draw up Energy-Saving Power Generation Dispatching Schedule. – Power System Technology, Vol. 35, 2011, No 5, pp. 90-96 (in Chinese).
  32. 32. Wen, H., H. Zhang. Management System for Energy-Requirements Standard Understanding and Application Analyze. – Information Technology&Standardization, 2011, No 37, pp. 65-67 (in Chinese).
  33. 33. Lu, H., B. Zhu, D. Li. More Energy Consumption Characteristics Analysis and Modeling of Forging Production System Based on Rough Sets Theory. – Machine Design and Manufacturing Engineering, 2013, No 12, pp. 20-23 (in Chinese).
  34. 34. Tribble, A. N. The Relationship between Weather Variables and Electricity Demand to Improve Short-Term Load Forecasting. Norman, Oklahoma, University of Oklahoma, 2003.
  35. 35. Herrmann, C., S. Thiede. Process Chain Simulation to Foster Energy Efficiency in Manufacturing. – CIRP Journal of Manufacturing Science and Technology, Vol. 1, 2009, No 4, pp. 221-229.10.1016/j.cirpj.2009.06.005
  36. 36. Tao, L., L. Hu, R. Chen, A. Chen. Establishment and Simulation of the RBF Model of the Unit Process Energy Consumption of an Automobile Enterprise. – In: International Workshop on Intelligent Systems and Applications, 2009, ISA 2009, 2009, No 1, pp. 23-24.10.1109/IWISA.2009.5072851
  37. 37. Azadeh, M. S. A., S. F. Ghaderi, S. M. Asadzadeh. An Integrated DEA PCA Numerical Taxonomy Approach for Energy Efficiency Assessment and Consumption Optimization in Energy Intensive Manufacturing Sectors. – Energy Policy, Vol. 35, 2007, No 7, pp. 3792-3806.10.1016/j.enpol.2007.01.018
  38. 38. Zeng, F., S. Miao, Y. Shang et al. Parallel Implementation of Node-Impedance Matrix Generation Algorithm Based on Decomposition and Coordination. – Power System Technology, Vol. 35, 2011, No 9, pp. 99-104 (in Chinese).
  39. 39. Chen, B., M. W. Chang. Load Forecasting Using Support Vector Machines: A Study on EUNITE Competition 2001. – IEEE Transactions on Power Systems, Vol. 19, 2004, No 4, pp. 1821-1830.10.1109/TPWRS.2004.835679
DOI: https://doi.org/10.1515/cait-2016-0079 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 83 - 97
Published on: Jan 25, 2017
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Rui-Dong Wang, Xue-Shan Sun, Xin Yang, Haiju Hu, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.