Have a personal or library account? Click to login
About a Fuzzy Distance between Two Fuzzy Partitions and Application in Attribute Reduction Problem Cover

About a Fuzzy Distance between Two Fuzzy Partitions and Application in Attribute Reduction Problem

Open Access
|Dec 2016

References

  1. 1. Dubois, D., H. Prade. Rough Fuzzy Sets and Fuzzy Rough Sets. - International Journal of General Systems, Vol. 17, 1990, pp. 191-209.10.1080/03081079008935107
  2. 2. Demetrovics, J., V.D. Thi, N. L. Giang. An Efficient Algorithm for Determining the Set of All Reductive Attributes in Incomplete Decision Tables. - Cybernetics and Information Technologies, Vol. 13, 2013, No 4, pp. 118-126.10.2478/cait-2013-0058
  3. 3. Demetrovics, J., V.D. Thi, N.L. Giang. On Finding All Reducts of Consistent Decision Tables. - Cybernetics and Information Technologies, Vol. 14, 2014, No 4, pp. 3-10.10.1515/cait-2014-0001
  4. 4. Demetrovics, J., N. Thi, L. Huong, V.D. Thi, N.L. Giang. Metric Based Attribute Reduction Method in Dynamic Decision Tables. - Cybernetics and Information Technologies, Vol. 16, 2016, No 2, pp. 3-15.10.1515/cait-2016-0016
  5. 5. Tsang, E.C.C., D.G. Chen, D.S. Yeung, X.Z. Wang, J.W.T. Lee. Attributes Reduction Using Fuzzy Rough Sets. - IEEE Trans. Fuzzy Syst., Vol. 16, 2008, pp. 1130-1141.10.1109/TFUZZ.2006.889960
  6. 6. Dai, J., Q. Xu. Attribute Selection Based on Information Gain Ratio in Fuzzy Rough Set Theory with Application to Tumor Classification. - Applied Soft Computing, Vol. 13, 2013, pp. 211-221.10.1016/j.asoc.2012.07.029
  7. 7. Hu, Q., D.R. Yu, Z. X. Xie. Information-Preserving Hybrid Data Reduction Based on Fuzzy- Rough Techniques. - Pattern Recognit. Lett., Vol. 27, 2006, No 5, pp. 414-423.10.1016/j.patrec.2005.09.004
  8. 8. Hu, Q., Z.X. Xie, D.R. Yu. Hybrid Attribute Reduction Based ona Novel Fuzzy-Rough Model and Information Granulation. - Pattern Recognit., Vol. 40, 2007, pp. 3509-3521.10.1016/j.patcog.2007.03.017
  9. 9. Jensen, R., Q. Shen. Semantics-Preserving Dimensionality Reduction: Rough and Fuzzy- Rough-Based Approaches. - IEEE Trans. Knowl. Data Eng., Vol. 16, 2004, No 12, pp. 1457-1471.10.1109/TKDE.2004.96
  10. 10. Jensen, R., Q. Shen. Fuzzy-Rough Attribute Reduction with Application to Web Categorization. - Fuzzy Sets Syst., Vol. 141, 2004, pp. 469-485.10.1016/S0165-0114(03)00021-6
  11. 11. Jensen, R., Q. Shen. Fuzzy-Rough Sets Assisted Attribute Reduction. - IEEE Trans. Fuzzy Syst., Vol. 15, 2007, No 1, pp. 73-89.10.1109/TFUZZ.2006.889761
  12. 12. Jensen, R., Q. Shen. New Approaches to Fuzzy-Rough Feature Selection. - IEEE Trans. Fuzzy Syst., Vol. 17, 2009, No 4, pp. 824-838.10.1109/TFUZZ.2008.924209
  13. 13. Bhatt, R. B., M. Gopal. On Fuzzy-Rough Sets Approach to Feature Selection. - Pattern Recognit. Lett., Vol. 26, 2005, pp. 965-975.10.1016/j.patrec.2004.09.044
  14. 14. Qian, Y.H., Q. Wang, H.H. Cheng, J.Y. Liang, C.Y. Dang. Fuzzy-Rough Feature Selection Accelerator. - Fuzzy Sets and Systems, Vol. 258, 2015, pp. 61-78.10.1016/j.fss.2014.04.029
  15. 15. Pawlak, Z. Rough Sets: Theoretical Aspects of Reasoning about Data. London, Kluwer Academic Publisher, 1991.
  16. 16. Pawlak, Z., J.W. Grzymala-Busse, R. Slowiski, W. Ziako. Rough Sets. Commun. - ACM, Vol. 38, 1995, No 11, pp. 89-95.10.1145/219717.219791
  17. 17. The UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/datasets.html
  18. 18. https://sourceforge.net/projects/weka/
DOI: https://doi.org/10.1515/cait-2016-0064 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 13 - 28
Published on: Dec 22, 2016
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Cao Chinh Nghia, Demetrovics Janos, Nguyen Long Giang, Vu Duc Thi, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.