Have a personal or library account? Click to login
Evolutionary Computing Based on QoS Oriented Energy Efficient VM Consolidation Scheme for Large Scale Cloud Data Centers Cover

Evolutionary Computing Based on QoS Oriented Energy Efficient VM Consolidation Scheme for Large Scale Cloud Data Centers

Open Access
|Jun 2016

References

  1. 1. Fraser, C. K., et al. Live Migration of Virtual Machines. - In: Proc. of 2nd USENIX Symposium on Networked Systems Design and Implementation, Berkeley, CA, 2005, pp. 273-286.
  2. 2. Vogels, W. Beyond Server Consolidation. - ACM Queue, 2008, No 1, pp. 20-26.10.1145/1348583.1348590
  3. 3. Feller, E., C. Morin et al. A Case for Fully Decentralized Dynamic VM Consolidation in Clouds. - In: Proc. of 4th IEEE International Conference, Cloud Computing Technology and Science, Taipei, Taiwan, 2012, pp. 26-33.10.1109/CloudCom.2012.6427585
  4. 4. Murtazaev, S. O. Sercon: Server Consolidation Algorithm Using Live Migration of Virtual Machines for Green Computing. - IETE Technical Review, Vol. 28, 2011, No 3, pp. 212-231.10.4103/0256-4602.81230
  5. 5. Marzolla, M., O. Babaoglu et al. Server Consolidation in Clouds through Gossiping. -In: Proc. of 12th IEEE International Symposium, World of Wireless, Mobile and Multimedia Networks, Lucca, Italy, 2011, pp. 1-6.10.1109/WoWMoM.2011.5986483
  6. 6. Beloglazov, J. A., et al. Energy-Aware Resource Allocation Heuristics for Efficient Management of Data Centers for Cloud Computing. - Grid Computing and e-Science, Future Generation Computer Systems, Vol. 28, 2012, pp. 755-768.10.1016/j.future.2011.04.017
  7. 7. Beloglazov, R. B. Optimal Online Deterministic Algorithms and Adaptive Heuristics for Energy and Performance Efficient Dynamic Consolidation of Virtual Machines in Cloud Data Centers. - Concurrency and Computation: Practice and Experience, Vol. 24, 2012, No 13, pp. 1397-1420.10.1002/cpe.1867
  8. 8. Farahnakian, F., P. Liljeberg et al. Linear regression Based CPU Usage Prediction Algorithm for Live Migration of Virtual Machines in Data Centers. - In: Proc. of 39th Euromicro Conference of Software Engineering and Advanced Applications, Santander, Spain, 2013, pp. 357-364.10.1109/SEAA.2013.23
  9. 9. Farahnakian, F., T. Pahikkala et al. Energy Aware Consolidation Algorithm Based on K-Nearest Neighbor Regression for Cloud Data Centers. - In: Proc. of 6th IEEE/ACM International Conference on Utility and Cloud Computing, Dresden, Germany, 2013.10.1109/UCC.2013.51
  10. 10. Wood, T., P. Shenoy et al. Sandpiper: Black-Box and Gray-Box Resource Management for Virtual Machines. - Computer Networks, Vol. 53, 2009, pp. 2923-2938.10.1016/j.comnet.2009.04.014
  11. 11. Ajiro, Y., A. Tanaka. Improving Packing Algorithms for Server Consolidation. - In: Proc. of International Conference for the Computer Measurement Group, San Diego, California, USA, 2007, pp. 399-407.
  12. 12. Wang, M., X. Meng et al. Consolidating Virtual Machines with Dynamic Bandwidth Demand in Data Centers. - In: Proc. of 30th IEEE International Conference on Computer Communications, Shanghai, China, 2011, pp. 71-75.10.1109/INFCOM.2011.5935254
  13. 13. Harman, M., K. Lakhotia et al. Cloud Engineering is Search Based Software Engineering Too. - Journal of Systems and Software, Vol. 86, 2013, No 9, pp. 2225-2241. 10.1016/j.jss.2012.10.027
  14. 14. Dorigo, M., G. Di Caro et al. Ant Algorithms for Discrete Optimization. - Artificial Life, Vol. 5, 1999, No 2, pp. 137-172.10.1162/10645469956872810633574
  15. 15. Dorigo, M., L. Gambardell a. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. - IEEE Transactions on Evolutionary Computation, Vol. 1, 1997, No 1, pp. 53-66.10.1109/4235.585892
  16. 16. Barbagallo, D., E. Di Nitto et al. A Bio-Inspired Algorithm for Energy Optimization ina Self-Organizing Data Center. - Self-Organizing Architectures, Springer, 2010, pp. 127-151.10.1007/978-3-642-14412-7_7
  17. 17. Chen , H., L. Xiong et al. Cloud Task Scheduling Simulation via Improved Ant Colony Optimization Algorithm. - Journal of Convergence Information Technology, 2013.
  18. 18. Dong, Y. S., G. C. Xu et al. A Distributed Parallel Genetic Algorithm of Placement Strategy for Virtual Machines Deployment on Cloud Platform. - The Scientific World Journal, 2014, pp. 1-12.10.1155/2014/259139410936825097872
  19. 19. Feller, E. E. et al. Energy-Aware Distributed Ant Colony Based Virtual Machine Consolidation in Iaa S Clouds Bibliographic Study. - Informatics Mathematics (INRIA), 2012, pp. 1-13.
  20. 20. Ferdaus, M. H., M. Murshed et al. Virtual Machine Consolidation in Cloud Data Centers Using ACO Metaheuristic. - In: Proc. of 20th International Conference Euro-Par 2014 Parallel Processing, Porto, Portugal, 2014, pp. 306-317.10.1007/978-3-319-09873-9_26
  21. 21. Zhong, H., K. Tao et al. An Approach to Optimized Resource Scheduling Algorithm for Open-Source Cloud Systems. - In: Proc. of China Grid Conference (China Grid), 2010, Fifth Annual, Guangzhou, China, 2010, pp. 124-129.10.1109/ChinaGrid.2010.37
  22. 22. Madhusudha n, B., K. C. Sekaran. A Genetic Algorithm Approach for Virtual Machine Placement in Cloud. - In: Proc. of International Conference on Emerging Research in Computing, Information, Communication and Applications, 2013, pp. 115-122.
  23. 23. Tang, M., S. Pan. A Hybrid Genetic Algorithm for the Energy-Efficient Virtual Machine Placement Problem in Data Centers. - Neural Processing Letters, Vol. 41, 2015, No 2, pp. 211-221.10.1007/s11063-014-9339-8
  24. 24. Cleveland, W. S. Robust Locally Weighted Regression and Smoothing Scatterplots. - Journal of the American Statistical Association, Vol. 74, 1979, No 368, pp. 829-836.10.1080/01621459.1979.10481038
  25. 25. Verma, G. D. et al. Server Workload Analysis for Power Minimization Using Consolidation. - In: Proc. of 2009 USENIX Annual Technical Conference, San Diego, China, 2009, pp. 28-42.
  26. 26. Abdi, H. Multiple Correlation Coefficient. - N. J. Salkind, Ed. Sage, Thousand Oaks, CA, USA, 2007.
  27. 27. Park, K. S., V. S. Pai. Co Mon: A Mostly-Scalable Monitoring System for Planet-Lab. - ACM SIGOPS Operating Systems Review, Vol. 40, 2006, No 1, pp. 65-74.10.1145/1113361.1113374
  28. 28. Theja, P. R., S. K. K. Babu. An Evolutionary Computing Based Energy Efficient VM Consolidation Scheme for Optimal Resource Utilization and Qo S Assurance. - Indian Journal of Science and Technology, 77179, Vol. 8, 2015, No 26, pp. 1-11.10.17485/ijst/2015/v8i26/77179
  29. 29. Theja, P. R., S. K. K. Babu. An Adaptive Genetic Algorithm Based Robust Qo S Oriented Green Computing Scheme for VM Consolidation in Large Scale Cloud Infrastructures. - Indian Journal of Science and Technology, 79175, Vol. 8, 2015, No 27, pp. 1-13. 10.17485/ijst/2015/v8i27/79175
DOI: https://doi.org/10.1515/cait-2016-0023 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 97 - 112
Published on: Jun 22, 2016
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Perla Ravi Theja, S. K. Khadar Babu, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.