1. Yin, Z., L. Cao, J. Han et al. LPTA: A Probabilistic Model for Latent Periodic Topic Analysis. – In: Proc. of 11th International Conference on Data Mining (ICDM), 2011 IEEE, 2011, pp. 904-913.
2. Liu, C., K. Zhang, H. Xiong et al. Temporal Skeletonization on Sequential Data: Patterns, Categorization, and Visualization. – In: Proc. of 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2014, pp. 1336-1345.
4. Yang, C. C., X. Shi, C.-P. Wei. Discovering Event Evolution Graphs from News Corpora. – IEEE Transactivitys on Systems, Man, and Cybernetics, Part A: Systems and Humans, Vol. 39, 2009, No 4, pp. 850-863.10.1109/TSMCA.2009.2015885
5. Ji, H., R. Grishman, Z. Chen. Cross-Document Event Extractivity and Tracking: Task, Evaluation, Techniques and Challenges. – In: Proc. of International Conference RANLP, Borovets, Bulgaria, 2009, pp. 166-172.
6. Liu, W., D. Wang, W. Xu et al. A Sub-Topic Partition Method Based on Event Network. – In: Proc. of 7th International Conference on Internet and Web Applications and Services, Stuttgart, Germany, 2012, pp. 194-199.
8. Weiler, A., M. Grossniklaus, M. H. Scholl. Event Identification and Tracking in Social Media Streaming Data. – In: Proc. of EDBT/ICDT Workshops, 2014, pp. 282-287.10.1145/2484702.2484703
9. Smith, T. F., M. S. Waterman. Comparison of Biosequences. – Advances in Applied Mathematics, Vol. 2, 1981, No 4, pp. 482-489.10.1016/0196-8858(81)90046-4
10. Li, Z., F. Wu, M. C. Crofoot. Mining Following Relationships in Movement Data. – In: Proc. of 13th International Conference on Data Mining (ICDM), 2013, IEEE, pp. 458-467.10.1109/ICDM.2013.98
11. Huang, X., X. Wang, Y. Zhang et al. Mining Periodic Traces of an Entity on Web. – International Journal of Computers Communications & Control, Vol. 10, 2015, No 5, pp. 654-666.10.15837/ijccc.2015.5.1668
12. Lin, G., Q. Gui-min, Z. Xiao-Feng. An Overview of Algorithms for Mining Frequent Patterns in Graph Data. – ACTA Electronica Sinica, Vol. 36, 2008, No 8, pp. 1603-1609.
13. Han, J., H. Cheng, D. Xin, X. Yan. Frequent Pattern Mining: Current Status and Future Directions. – Data Mining and Knowledge Discovery, Vol. 15, 2007, No 1, pp. 55-86.10.1007/s10618-006-0059-1
14. Wörlein, M., T. Meinl, I. Fischer et al. A Quantitative Comparison of the Subgraph Miners MoFa, gSpan, FFSM, and Gaston. Berlin, Heidelberg, Springer, 2005.10.1007/11564126_39