Have a personal or library account? Click to login

Granular Computing in Intelligent Transportation: An Exploratory Study

Open Access
|Dec 2015

References

  1. 1. Zadeh, L. A. Fuzzy Sets and Information Granulation. Advances in Fuzzy Set Theory and Applications. Amsterdam, North-Holland Publishing, 1979.
  2. 2. Hobbs, J. R. Granularity. – In: Proc. of 9th International Joint Conference on Artificial Intelligence, Los Angeles, CA, 1985.
  3. 3. Zadeh, L. A. Fuzzy Logic = Computing with Words. – IEEE Trans on Fuzzy Systems, Vol. 4, 1996, pp. 103-111.10.1109/91.493904
  4. 4. Pawlak, Z. Rough Sets. 1982.10.1007/BF01001956
  5. 5. Pawlak, Z. Rough Sets-Theoretical Aspects of Reasoning about Data. 1991.10.1007/978-94-011-3534-4
  6. 6. Liu, R., X. Huang. The Granular Theorem of Quotient Space in Image Segmentation. – Chinese Journal of Computers, Vol. 28, 2005, No 10, pp. 1680-1685.
  7. 7. Wang, G. Extension of Rough Set under Incomplete Information Systems. – Journal of Computer Research and Development, 2002, No 10, pp. 11-15.
  8. 8. San, Y., Y. Ye. Rough Sets Theory and It’s Application in the Intelligent Systems. – CAAI Transactions on Intelligent Systems, Vol. 2, 2007, No 4, pp. 40-47.
  9. 9. Zhang, L., B. Zhang. A Quotient Space Approximation Model of Multi Resolution Signal Analysis. – J. Computer Sci&Technol., Vol. 20, 2005, No 1, pp. 90-94.10.1007/s11390-005-0010-8
  10. 10. Zhang, L., B. Zhang. Theory of Fuzzy Quotient Space (Methods of Fuzzy Granular Computing). – Journal of Software, Vol. 14, 2003, No 4, pp. 770-776.
  11. 11. Yao, Y., C. Liau, N. Zhong. Granular Computing Based on Rough Sets, Quotient Space Theory, and Belief Functions. – In: Lecture Notes in Computer Science, 2003, pp. 152-159.10.1007/978-3-540-39592-8_21
  12. 12. Zheng, Z. Tolerance Granular Space and It’s Applications. Beijing, Graduate School of the Chinese Academy of Science, 2006.
  13. 13. Wang, G., Q. Zhang, J. Hu. An Overview of Granular Computing. – CAAI Transactions on Intelligent Systems, 2007, No 6, pp. 8-26.
  14. 14. Zhang, Q., G. Wang, X. Yu. Approximation Sets of Rough Sets. – Journal of Software, 2012, No 7, pp. 1745-1759.10.3724/SP.J.1001.2012.04226
  15. 15. Zhang, Q., G. Wang, X. Liu. Rule Acquisition Algorithm Based on Maximal Granule. – PR& AI, 2012, No 3, pp. 388-396.
  16. 16. Li, L., K. Luo, B.-X. Zhuo. Rough Clustering Algorithm Based on Granular Computing. – Application Research of Computers, 2013, No 10, pp. 2916-2919.
  17. 17. Li, H., S. Yang, H. Liu. Study of Qualitative Data Cluster Model Based on Granular Computing. – AASRI Procedia, 2013, pp. 329-333.10.1016/j.aasri.2013.10.048
  18. 18. Yao, Y. Y., N. Zhong. Potential Applications of Granular Computing in Knowledge Discovery and Data Mining, 1999.
  19. 19. Lin, T. Y. Encyclopedia of Complexity and Systems Science. New York, Springer, 2009.
  20. 20. Leung, H., N. E. Faouzi, A. Kurian. Intelligent Transportation System (ITS). – Information Fusion, Vol. 12, 2011, No 1, pp. 2-3.10.1016/j.inffus.2010.06.003
  21. 21. Gao, H., F. Liu. Combination Prediction Model of Traffic Flow Based on Rough Set Theory. – International Conference on Information Technology and Computer Science, 2009, pp. 425-428.10.1109/ITCS.2009.225
  22. 22. He, F.-G., R. Liu, Y. Zhang, L. Zhang. BGrR: Large-Scale Network Routing Speedup Techniques Based on Granular Computing. – Computer Science, 2014, No 11, pp. 265-268, p. 281.
  23. 23. Xiangen, B., Z. Hao, Z. Xiaodong et al. Support Vector Machine Regression Model with Rough Set-Based Feature Selection for Forecasting of Vessel Traffic Flow. – Computer Engineering& Applications, 2014.
  24. 24. Ming-Jun, Q., S. Jian-Ye. Train Operation Adjustment Based on Rough Set Theory. – Journal of Transportation Systems Engineering & Information Technology, 2008.
  25. 25. Jiang, G., L. H. Gang, X. D. Zhang et al. Malfunction Identifying and Modifying of Dynamic Traffic Data. – Journal of Traffic & Transportation Engineering, Vol. 4, 2004, No 1, pp. 121-125.
  26. 26. Jiang Shun-Liang, Huang Xiao-Hui, Yang Li, Xu Shao-Ping. Research on Cellular Automata of Traffic Flow Based on Granular Computing. – Journal of Guangxi University. Nar. Sci. Ed., 2009, No 5, pp. 672-676.
  27. 27. Zadeh, L. A. Fuzzy Sets. – Information and Control, Vol. 8, 1965, No 1, pp. 338-353. doi: 10.1016/S0019-9958(65)90241-X.10.1016/S0019-9958(65)90241-X
  28. 28. Pawlak, Z. Rough Sets. – International Journal of Computer and Information Science, Vol. 11, 1982, No 5, pp. 341-356. doi: 10.1007/BF01001956.10.1007/BF01001956
  29. 29. Zhang, L., B. Zhang. The Theory and Applications of Problem Solving-Quotient Space Based Granular Computing. 2nd Ed. Beijing, Tsinghua University Press, 2007 (in Chinese).
  30. 30. Yao, Y. Y. Generalized Rough Set Models. L. Polkowski, A. Skowron, Eds. Rough Sets in Knowledge Discovery, Heidelberg, Physica-Verlag, 1998, pp. 286-318.
DOI: https://doi.org/10.1515/cait-2015-0073 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 122 - 134
Published on: Dec 30, 2015
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Seng Dewen, Cheng Xinhong, Chen Jing, Fang Xujian, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.