Have a personal or library account? Click to login
A Study on the Approximation of Clustered Data to Parameterized Family of Fuzzy Membership Functions for the Induction of Fuzzy Decision Trees Cover

A Study on the Approximation of Clustered Data to Parameterized Family of Fuzzy Membership Functions for the Induction of Fuzzy Decision Trees

Open Access
|Jul 2015

References

  1. 1. Safavian, S. R., D. Landgrebe. A Survey of Decision Tree Classifier Methodology. - IEEE Trans SMC, Vol. 21, 1991, No 3, pp. 660-674.10.1109/21.97458
  2. 2. Weber, R. Fuzzy ID3: A Class of Methods for Automatic Knowledge Acquisition. - In: Proc. of International Conference on Fuzzy Logic Neural Networks, Iizuka, Japan, 1992, pp. 265-268.
  3. 3. Yuan, Y., M. J. Shaw. Induction of Fuzzy Decision Trees. - Fuzzy Sets Syst., Vol. 69, 1995, pp. 125-139.10.1016/0165-0114(94)00229-Z
  4. 4. Jeng, B., Y. M. Jeng, T. P. Liang. FILM: A Fuzzy Inductive Learning Method for Automated Knowledge Acquisition. - Dec. Support Syst., Vol. 21, 1997, pp. 61-73.10.1016/S0167-9236(97)00019-5
  5. 5. Umano, M., et al. Fuzzy Decision Tree by Fuzzy ID3 Algorithm and its Application to Diagnosis Systems. - In: IEEE International Conference on Fuzzy Systems, 26-29 June 1994, pp. 2113-2118.
  6. 6. Chiang, I. J., J. Y. jen Hsu. Fuzzy Classification Trees for Data Analysis. - Fuzzy Sets Syst., Vol. 130, 2002, pp. 87-99.10.1016/S0165-0114(01)00212-3
  7. 7. Aymerich, F. X., A., J., Cabanas, M. E. Comabella, M. Sobrevilla, P. A. Rovira. Decision Tree Based Fuzzy Classifier of 1H Magnetic Resonance Spectra from Cerebrospinal Fluid Sample. - Fuzzy Sets and Systems, Vol. 170, 2011, No 1.10.1016/j.fss.2011.01.003
  8. 8. Sugumaran, N. V., K. I. Ramachandran. Fault Diagnosis of Roller Bearing Using Fuzzy Classifier and Histogram Features with Focus on Automatic Rule Learning. - Expert Systems with Applications, Vol. 38, 2011, pp. 4901-4907.10.1016/j.eswa.2010.09.089
  9. 9. Biswal, B., H. S. Behera, R. Bisoi, P. K. Dash. Classification of Power Quality Data Using Decision Tree and Chemo Tactic Differential Evolution Based Fuzzy Clustering. - Swarm and Evolutionary Computation, Vol 4, 2012, pp. 12-24.10.1016/j.swevo.2011.12.003
  10. 10. Yin-Fu, Huangn, Chingpingliang, Singwuliou. Intron Identification Approaches Based on Weighted Features and Fuzzy Decision Trees. - Computers in Biology and Medicine, Vol. 42, 2012, pp. 112-122.10.1016/j.compbiomed.2011.10.015
  11. 11. Nakanishi, H., I. B. Turksen, M. Sugeno. A Review and Comparison of Six Reasoning Methods. - Fuzzy Sets and Systems, Vol. 57, 1993, pp. 257-294.10.1016/0165-0114(93)90024-C
  12. 12. Sugeno, M., T. Yasukawa. A Fuzzy-Logic Based Approach to Qualitative Modelling. - IEEE Transactions on Fuzzy Systems, Vol. 1, 1993, pp. 6-31.10.1109/TFUZZ.1993.390281
  13. 13. Rajen, B. Bhatt, Swathi J. Narayanan, Ilango Paramasivam, M. Khalid.Approximating Fuzzy Membership Functions from Clustered Raw Data. - In: Proc. of IEEE International Conference on Innovations in Social and Humanitarian Engineering, 2012, pp. 487-492.
  14. 14. Bezdek, J. C. Pattern Recognition with Fuzzy Objective Function Algorithms. - NY, Plenum Press, 1982.10.1007/978-1-4757-0450-1
  15. 15. Guillaume, Serge. Designing Fuzzy Inference Systems from Data: An Interpretability- Oriented Review. - IEEE Transactions on Fuzzy Systems, Vol. 9, 2001, No 3, pp. 426-443.10.1109/91.928739
  16. 16. Chiu, S. L. Fuzzy Model Identification Based on Cluster Estimation. - J. Intell. Fuzzy Systems, Vol. 2, 1994, pp. 267-278.10.3233/IFS-1994-2306
  17. 17. Rajen, B. Bhatt, M. Gopal. FRCT: Fuzzy-Rough Classification Trees. - Pattern Anal.Applic., Vol. 11, 2008, pp. 73-88.10.1007/s10044-007-0080-z
  18. 18. The MathWorks, Inc. Fuzzy Logic Toolbox: User Guide (R2007b).
  19. 19. Quinlan, J. R. Decision Trees and Decision Making. - IEEE Trans. SMC, Vol. 20, 1990, No 2, pp. 339-346.10.1109/21.52545
  20. 20. Blake, C. L., C. J. Merz. UCI Repository of Machine Learning Databases. Irvine, CA, University of California, Department of Information and Computer Science, 1998. http://www.ics.uci.edu/*mlearn/MLRepository.html
  21. 21. Fisher, R. A. Statistical Methods and Scientific Inference. Second Ed. Hafner Publishing, Co., 1959, pp. 674-701.
  22. 22. Friedman, M. The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance. - Journal of the American Statistical Association, Vol. 32, 1937, pp. 674-701.10.1080/01621459.1937.10503522
  23. 23. Friedman, M. A Comparison of Alternative Tests of Significance for the Problem of m Rankings. - Annals of Mathematical Statistics, Vol. 11, 1940, pp. 86-92.10.1214/aoms/1177731944
  24. 24. Demsar, J. Statistical Comparisons of Classifiers over Multiple Data Sets. - Journal of Machine Learning Research, Vol. 7, 2006, pp. 1-30.
  25. 25. Nemenyi, P. B. Distribution-Free Multiple Comparisons. Master’s Thesis, Princeton University, 1963.
  26. 26. Holm, S. A Simple Sequentially Rejective Multiple Test Procedure. - Scandinavian, Journal of Statistics, Vol. 6, 1979, pp. 65-70.
  27. 27. Shaffer, J. Modified Sequentially Rejective Multiple Test Procedures. - Journal of American Statistical Association, Vol. 81, 1986, pp. 826-831. 10.1080/01621459.1986.10478341
  28. 28. Bergmann, G., G. Hommel. Improvements of General Multiple Test Procedures for Redundant Systems of Hypotheses. - In: P. Bauer, G. Hommel, E. Sonnemann, Eds, Multiple Hypotheses Testing, Springer, 1988, pp. 100-115.10.1007/978-3-642-52307-6_8
  29. 29. Wright, S. Adjusted p-Values for Simultaneous Inference. - Biometrics, Vol. 48, 1992, pp. 1005-1013.10.2307/2532694
  30. 30. Derrac, J., S. Garcia, D. Molina, F. Herrera. A Practical Tutorial on the Use of Nonparametric Statistical Tests as a Methodology for Comparing Evolutionary and Swarm Intelligence Algorithms. Swarm and Evolutionary Computation, 2011, pp. 3-18.10.1016/j.swevo.2011.02.002
  31. 31. Alcala- Fdez, J., L. Sanchez, S. Garcia, M. J. del Jesus, S. Ventura, J. M. Garrell, J. Otero, C. Romero, J. Bacardit, V. M. Rivas, J. C. Fernández, F. Herrera. KEEL: A Software Tool to Assess Evolutionary Algorithms for Data Mining Problems. - Soft Computing, Vol. 13, 2008, No 3, pp. 307-318.10.1007/s00500-008-0323-y
  32. 32. Alcala- Fdez, J., A. Fernandez, J. Luengo, J. Derrac, S. García, L. Sánchez, F. Herrera. KEEL Data-Mining Software Tool: Data Set Repository, Integration of Algorithms and Experimental Analysis Framework. - Journal of Multiple-Valued Logic and Soft Computing, Vol. 17, 2011, No 2-3, pp. 255-287.
DOI: https://doi.org/10.1515/cait-2015-0030 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 75 - 96
Published on: Jul 3, 2015
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Swathi J. Narayanan, Ilango Paramasivam, Rajen B. Bhatt, M. Khalid, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.