Have a personal or library account? Click to login
New Distance Concept and Graph Theory Approach for Certain Coding Techniques Design and Analysis Cover

New Distance Concept and Graph Theory Approach for Certain Coding Techniques Design and Analysis

Open Access
|May 2019

References

  1. 1. N. Deo, Graph Theory with Applications to Engineering and Computer Science. Dover Publications, 2016.
  2. 2. J. Susymary and R. Lawrance, Graph theory analysis of protein-protein interaction graphs through clustering method, in 2017 IEEE International Conference on Intellignet Techniques in Control, Optimization and Signal Processing, pp. 1–5, Srivilliputhur, India, March 23–25, 2017.10.1109/ITCOSP.2017.8303125
  3. 3. K. Ouahada and H. Ferreira, A similation and graph theoretical analysis of certain porperties of spectrall null codebooks, SAIEE Africa Research Journal, vol. 103, no. 3, pp. 106–115, 2012.10.23919/SAIEE.2012.8532162
  4. 4. K. Ouahada and H. C. Ferreira, A graph theoretic approach for spectral null codes, in Proceedings of the Information Theory Workshop, pp. 369–373, Taormina, Sicily, Italy, October 11-16, 2009.10.1109/ITW.2009.5351185
  5. 5. A. K. Singh, Error detection and correction by hamming codel, in Proceedings of the 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication, pp. 35–37, Bambhori, Jalgoan, India, December 22-24, 2016.10.1109/ICGTSPICC.2016.7955265
  6. 6. A. Wachter-Zeh, List decoding of insertions and deletions, IEEE Transactions on Information Theory, vol. PP, no. 99, p. 1, 2017.10.1109/ISIT.2017.8006869
  7. 7. K. Ouahada, T. G. Swart, and H. C. Ferreira, Binary permutation sequences as subsets of levenshtein codes and higher order spectral nulls codes, in 2006 IEEE Information Theory Workshop - ITW ’06 Chengdu, pp. 535–539, Chengdu, China, Oct. 2006.10.1109/ITW2.2006.323690
  8. 8. A. Viterbi and J. Omura, Principles of Digital Communication and Coding. McGraw-Hill Kogakusha LTD, Tokyo Japan, 1979.
  9. 9. A. J. H. Vinck and H. C. Ferreira, Permutation trellis codes, in in Proceedings of the International Symposium on Information Theory (ISIT 2001), p. 279, Washington, DC,USA, June 24-29, 2001.
  10. 10. A. J. H. Vinck, Coded modulation for powerline communications, AEU International Journal of Electronics and Communications, vol. 54, no. 1, pp. 45–49, 2000.
  11. 11. H. C. Ferreira, A. J. H. Vinck, T. G. Swart, and I. de Beer, Permutation trellis codes, IEEE Trans. Commun., vol. 53, no. 11, pp. 1782–1789, 2005.
  12. 12. T. G. Swart and H. C. Ferreira, A generalized upper bound and a multilevel construction for distance-preserving mappings, IEEE Trans. Inf. Theory, vol. 52, no. 8, pp. 3685–3695, 2006.
  13. 13. K. Ouahada and H. C. Ferreira, k-cube construction mappings from binary vectors to permutation sequences, in in proceedings of IEEE International Symposium on Information Theory, p. 279, Seoul, South Korea, June 28–July 3, 2009.10.1109/ISIT.2009.5205703
  14. 14. W. J. Dally, Express cubes: Improving the performance of k-ary n-cube interconnection networks, IEEE Trans. On Computers, vol. 40, no. 9, pp. 1016–1023, Sept. 1991.
  15. 15. M. Haynes, Magnetic recording techniques for buried servos, IEEE Transactions on Magnetics, vol. 17, no. 6, pp. 2730–2734, Nov. 198.
  16. 16. H. C. Ferreira, I. de Beer, and A. J. H. Vinck, Distance preserving mappings onto convolutional codes revisited, in Proceedings of the IEEE Information Theory Workshop, pp. 23–26, Breisach, Germany, Apr. 26–29, 2002.
  17. 17. E. Gorog, Alphabets with desirable frequency spectrum properties, IBM J. Res. Develop, vol. 12, pp. 234–241, May 1968.10.1147/rd.123.0234
  18. 18. K. Ouahada, T. G. Swart, and H. C. Ferreira, Spectral shaping permutation distance-preserving mappings codes, in IEEE Proc. ITW’07 Conf. California, USA, pp. 36–41, California, USA, Sept. 2Ö6, 2007.10.1109/ITW.2007.4313046
  19. 19. K. A. S. Immink, Codes for mass data storage systems. Shannon Foundation Publishers, The Netherlands, 1999.
  20. 20. K. A. S. Immink, Spectral null codes, IEEE Transactions on Magnetics, vol. 26, no. 2, pp. 1130–1135, Mar. 1990.
  21. 21. C. Yeh and B. Parhami, ‘parallel algorithms for index-permutation graphs. an extension of cayley graphs for multiple chip-multiprocessors (mcmp), in International Conference on Parallel Processing, pp. 3–12, California, USA, Sept. 2001.10.1109/ICPP.2001.952041
  22. 22. L.-H. Chang, C. Wang, P.-N. Chen, Y. S. Han, and V. Y. F. Tan, Distance spectrum formula for the largest minimum hamming distance of finite-length binary block codes, in 2017 IEEE Information Theory Workshop - ITW 2017 Kaohsiung, pp. 419–423, Kaohsiung, Taiwan, Nov. 6–10, 2017.10.1109/ITW.2017.8277923
Language: English
Page range: 53 - 70
Submitted on: May 21, 2017
Accepted on: Mar 28, 2019
Published on: May 11, 2019
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Khmaies Ouahada, Hendrik C. Ferreira, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.