Have a personal or library account? Click to login
Improved mobility models for charge transport in graphene Cover
By: G. Nastasi and  V. Romano  
Open Access
|May 2019

References

  1. 1. V. Romano, A. Majorana, and M. Coco, DSMC method consistent with the Pauli exclusion principle and comparison with deterministic solutions for charge transport in graphene, Journal of Computational Physics, vol. 302, pp. 267–284, 2015.10.1016/j.jcp.2015.08.047
  2. 2. A. Majorana, G. Mascali, and V. Romano, Charge transport and mobility in monolayer graphene, J. Math. Industry, no. 7:4, doi:10.1186/s13362-016-0027-3, 2016.10.1186/s13362-016-0027-32016
  3. 3. M. Coco, A. Majorana, and V. Romano, Cross validation of discontinuous Galerkin method and Monte Carlo simulations of charge transport in graphene on substrate, Ricerche di matematica, vol. 66, pp. 201–220, 2017.10.1007/s11587-016-0298-4
  4. 4. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Reviews of Modern Physics, vol. 81, pp. 109–162, 2009.10.1103/RevModPhys.81.109
  5. 5. A. Majorana, G. Nastasi, and V. Romano, Simulation of bipolar charge transport in graphene by using a discontinuous Galerkin method, Communications in Computational Physics, vol. 26, no. 1, pp. 114–134, 2019.10.4208/cicp.OA-2018-0052
  6. 6. Y. Cheng, I. M. Gamba, A. Majorana, and C.-W. Shu, A discontinuous Galerkin solver for Boltzmann-Poisson systems in nano devices, Comput. Methods Appl. Mech. Engrg., vol. 198, no. 37-40, pp. 3130– 3150, 2009.
  7. 7. Y. Cheng, I. M. Gamba, A. Majorana, and C.-W. Shu, A brief survey of the discontinuous Galerkin method for the Boltzmann-Poisson equations, Boletin de la Sociedad Espanola de Matematica Aplicada, vol. 54, pp. 47–64, 2011.10.1007/BF03322587
  8. 8. V. E. Dorgan, M.-H. Bae, and E. Pop, Mobility and saturation velocity in graphene on SiO2, Appl. Phys. Lett., vol. 97, p. 082112, 2010.
  9. 9. M. Coco, A. Majorana, G. Nastasi, and V. Romano, High-field mobility in graphene on substrate with a proper inclusion of the Pauli exclusion principle, Atti dell’Accademia Peloritana dei Pericolanti, in press.
  10. 10. G. Mascali and V. Romano, Charge transport in graphene including thermal effetcs, SIAM J. Appl. Mathematics, vol. 77, no. 2, pp. 593–613, 2017.10.1137/15M1052573
  11. 11. M. Coco and V. Romano, Simulation of Electron-Phonon Coupling and Heating Dynamics in Suspended Monolayer Graphene Including All the Phonon Branches, J. Heat Transfer, vol. 140, p. 092404, 2018.
  12. 12. O. Morandi, Wigner model for quantum transport in graphene, J. Phys. A: Math. Theor., vol. 44, p. 265301, 2011.
  13. 13. L. Barletti, Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle, J. Math. Phys., vol. 55, no. 8, p. 083303, 2014.
  14. 14. O. Muscato, A benchmark study of the Signed-particle Monte Carlo algorithm for the Wigner equation, Comm. in Appl. and Industrial Math., vol. 8, no. 1, pp. 237–250, 2017.10.1515/caim-2017-0012
  15. 15. L. Luca and V. Romano, Quantum corrected hydrodynanic models for charge transport in graphene, Preprint, 2018.10.1016/j.aop.2019.03.018
Language: English
Page range: 41 - 52
Submitted on: Dec 10, 2018
|
Accepted on: Feb 15, 2019
|
Published on: May 11, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 G. Nastasi, V. Romano, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.