Have a personal or library account? Click to login
Generalized special functions in the description of fractional diffusive equations Cover

Generalized special functions in the description of fractional diffusive equations

Open Access
|Feb 2019

References

  1. 1. R. Haberman, Applied partial differential equations with Fourier series and boundary value problems. Pearson Higher Ed, 2012.
  2. 2. L. C. Evans, Partial differential equations (Providence, ri: American Mathematical Society), 1998.
  3. 3. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables, vol. 55. Courier Corporation, 1965.10.1115/1.3625776
  4. 4. B. M. Levitan, Generalized translation operators and some of their applications, 1964.
  5. 5. C. Cesarano, G. M. Cennamo, and L. Placidi, Operational methods for Hermite polynomials with applications, WSEAS Transactions on Mathematics, vol. 13, pp. 925-931, 2014.
  6. 6. W. Miller, Lie theory and special functions. Academic Press, 1968.
  7. 7. H. W. Gould, A. Hopper, et al., Operational formulas connected with two generalizations of Hermite polynomials, Duke Mathematical Journal, vol. 29, no. 1, pp. 51-63, 1962.10.1215/S0012-7094-62-02907-1
  8. 8. P. Appell and J. K. de Fériet, Fonctions Hypergéométriques et Hypersphériques: Polynômes d'Hermite. Paris: Gauthier-Villars, 1926.
  9. 9. C. Cesarano, Operational methods and new identities for Hermite polynomials, Mathematical Mod- elling of Natural Phenomena, vol. 12, no. 3, pp. 44-50, 2017.10.1051/mmnp/201712304
  10. 10. C. Cesarano, C. Fornaro, and L. Vazquez, Operational results in bi-orthogonal Hermite functions, Acta Mathematica Universitatis Comenianae, vol. 85, no. 1, pp. 43-68, 2016.
  11. 11. C. Cesarano, C. Fornaro, and L. Vazquez, A note on a special class of Hermite polynomials, Interna- tional Journal of Pure and Applied Mathematics, vol. 98, no. 2, pp. 261-273, 2015.10.12732/ijpam.v98i2.8
  12. 12. H. M. Srivastava and Y. B. Cheikh, Orthogonality of some polynomial sets via quasi-monomiality, Applied Mathematics and Computation, vol. 141, no. 2-3, pp. 415-425, 2003.10.1016/S0096-3003(02)00961-X
  13. 13. G. Dattoli*, S. Lorenzutta, P. Ricci, and C. Cesarano, On a family of hybrid polynomials, Integral Transforms and Special Functions, vol. 15, no. 6, pp. 485-490, 2004.10.1080/10652460412331270634
  14. 14. C. Cesarano and D. Assante, A note on generalized Bessel functions, International Journal of Math- ematical Models and Methods in Applied Sciences, vol. 7, no. 6, pp. 625-629, 2013.
  15. 15. C. Cesarano, B. Germano, and P. Ricci, Laguerre-type Bessel functions, Integral transforms and special functions, vol. 16, no. 4, pp. 315-322, 2005.10.1080/10652460412331270629
  16. 16. C. Cesarano and P. Ricci, The legendre polynomials as a basis for Bessel functions, International Journal of Pure and Applied Mathematics, vol. 111, no. 1, pp. 129-139, 2016.10.12732/ijpam.v111i1.12
  17. 17. D. Assante, C. Cesarano, C. Fornaro, and L. Vazquez, Higher order and fractional diffusive equations, Journal of Engineering Science and Technology Review, vol. 8, no. 5, pp. 202-204, 2015.10.25103/jestr.085.25
Language: English
Page range: 31 - 40
Submitted on: Nov 22, 2018
Accepted on: Dec 20, 2018
Published on: Feb 5, 2019
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Clemente Cesarano, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.