Have a personal or library account? Click to login
Multi-Dimensional Chebyshev Polynomials: A Non-Conventional Approach Cover

Multi-Dimensional Chebyshev Polynomials: A Non-Conventional Approach

Open Access
|Feb 2019

References

  1. 1. B. M. Levitan, Generalized translation operators and some of their applications. Jerusalem: Israel Program for Scientific Translations, 1964.
  2. 2. Y. Smirnov and A. V. Turbiner, Hidden sl 2-algebra of finite-difference equations 1, Modern Physics Letters, vol. A10, pp. 1795{1801, 1995.
  3. 3. W. Miller, Lie theory and special functions. Academic Press, 1968.
  4. 4. P. Appell and J. K. de Feriet, Fonctions Hypergeometriques et Hyperspheriques: Polynomes d'Hermite. Paris: Gauthier-Villars, 1926.
  5. 5. H. W. Gould, A. Hopper, et al., Operational formulas connected with two generalizations of Hermite polynomials, Duke Mathematical Journal, vol. 29, no. 1, pp. 51{63, 1962.10.1215/S0012-7094-62-02907-1
  6. 6. C. Cesarano, Operational methods and new identities for Hermite polynomials, Mathematical Mod- elling of Natural Phenomena, vol. 12, no. 3, pp. 44{50, 2017.10.1051/mmnp/201712304
  7. 7. C. Cesarano, C. Fornaro, and L. Vazquez, A note on a special class of Hermite polynomials, Interna- tional Journal of Pure and Applied Mathematics, vol. 98, no. 2, pp. 261{273, 2015.10.12732/ijpam.v98i2.8
  8. 8. H. Srivastava and H. Manocha, Treatise on generating functions. Ney York: John Wiley & Sons, 1984.
  9. 9. C. Cesarano, G. M. Cennamo, and L. Placidi, Operational methods for Hermite polynomials with applications, WSEAS Transaction on Mathematics, vol. 13, pp. 925{931, 2014.
  10. 10. C. Cesarano, C. Fornaro, and L. Vazquez, Operational results in bi-orthogonal Hermite functions, Acta Mathematica Universitatis Comenianae, vol. 85, no. 1, pp. 43{68, 2016.
  11. 11. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables, vol. 55. Courier Corporation, 1965.10.1115/1.3625776
  12. 12. C. Cesarano, Generalized Chebyshev polynomials, Hacet. J. Math. Stat, vol. 43, no. 5, pp. 731{740, 2014.
  13. 13. C. Cesarano, Integral representations and new generating functions of Chebyshev polynomials, Rev. Mat. Complut, 2015.10.15672/HJMS.20154610029
  14. 14. C. Cesarano and P. Ricci, The Legendre polynomials as a basis for Bessel functions, International Journal of Pure and Applied Mathematics, vol. 111, no. 1, pp. 129{139, 2016.10.12732/ijpam.v111i1.12
  15. 15. G. Dattoli, Hermite-Bessel and Laguerre-Bessel functions: a by-product of the monomiality principle, 1999.
  16. 16. P. Ricci and I. Tavkhelidze, An introduction to operational techniques and special polynomials, Jour- nal of mathematical sciences, vol. 157, no. 1, pp. 161{189, 2009.10.1007/s10958-009-9305-6
  17. 17. C. Cesarano, Generalization of two-variable Chebyshev and Gegenbauer polynomials, International Journal of Applied Mathematics and Statistics, vol. 53, no. 1, pp. 1{7, 2015.
  18. 18. C. Cesarano and C. Fornaro, Operational identities on generalized two-variable Chebyshev polyno- mials, International Journal of Pure and Applied Mathematics, vol. 100, no. 1, pp. 59{74, 2015.10.12732/ijpam.v100i1.6
Language: English
Page range: 1 - 19
Submitted on: Nov 22, 2018
|
Accepted on: Nov 22, 2018
|
Published on: Feb 5, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Clemente Cesarano, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.