Have a personal or library account? Click to login
A fractional spline collocation-Galerkin method for the time-fractional diffusion equation Cover

A fractional spline collocation-Galerkin method for the time-fractional diffusion equation

By: L. Pezza and  F. Pitolli  
Open Access
|Mar 2018

References

  1. 1. H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations. Elsevier, 2006.
  2. 2. R. Hilfer, Applications of fractional calculus in physics. World Scientific, 2000.10.1142/3779
  3. 3. F. Mainardi, Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models. World Scientific, 2010.10.1142/p614
  4. 4. V. E. Tarasov, Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media. Springer Science & Business Media, 2011.10.1007/978-3-642-14003-7
  5. 5. D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional calculus. Models and numerical methods, World Scientific, vol. 3, pp. 10-16, 2012.10.1142/8180
  6. 6. A. Pedas and E. Tamme, Numerical solution of nonlinear fractional differential equations by spline collocation methods, Journal of Compu- tational and Applied Mathematics, vol. 255, pp. 216-230, 2014.10.1016/j.cam.2013.04.049
  7. 7. M. Zayernouri and G. E. Karniadakis, Fractional spectral collocation method, SIAM Journal on Scientific Computing, vol. 36, no. 1, pp. A40- A62, 2014.10.1137/130933216
  8. 8. L. Pezza and F. Pitolli, A multiscale collocation method for fractional differential problems, Mathematics and Computers in Simula- tions, vol. 147, pp. 210-219, 2018.10.1016/j.matcom.2017.07.005
  9. 9. M. Unser and T. Blu, Fractional splines and wavelets, SIAM Review, vol. 42, no. 1, pp. 43-67, 2000.10.1137/S0036144598349435
  10. 10. I. Podlubny, Fractional differential equations: an introduction to frac- tional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol. 198. Academic Press, 1998.
  11. 11. L. Schumaker, Spline functions: basic theory. Cambridge University Press, 2007.10.1017/CBO9780511618994
  12. 12. L. Gori and F. Pitolli, Refinable functions and positive operators, Ap- plied Numerical Mathematics, vol. 49, no. 3, pp. 381-393, 2004.10.1016/j.apnum.2003.12.015
  13. 13. L. Gori, L. Pezza, and F. Pitolli, Recent results on wavelet bases on the interval generated by GP refinable functions, Applied numerical math- ematics, vol. 51, no. 4, pp. 549-563, 2004.10.1016/j.apnum.2004.06.009
  14. 14. F. Calabrfio, C. Manni, and F. Pitolli, Computation of quadrature rules for integration with respect to refinable functions on assigned nodes, Applied Numerical Mathematics, vol. 90, pp. 168-189, 2015.10.1016/j.apnum.2014.11.010
  15. 15. W. Gautschi, L. Gori, and F. Pitolli, Gauss quadrature for refinable weight functions, Applied and Computational Harmonic Analysis, vol. 8, no. 3, pp. 249-257, 2000.10.1006/acha.1999.0306
  16. 16. Thomfiee, Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, 2006.
  17. 17. N. Ford, J. Xiao, and Y. Yan, A finite element method for time fractional partial differential equations, Fractional Calculus and Applied Analysis, vol. 14, no. 3, pp. 454-474, 2011.10.2478/s13540-011-0028-2
  18. 18. W. Dahmen, S. Prössdorf, and R. Schneider, Wavelet approximation methods for pseudodifferential equations: I stability and convergence, Mathematische Zeitschrift, vol. 215, no. 1, pp. 583-620, 1994.10.1007/BF02571732
  19. 19. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, 2nd printing with corrections, vol. 55. Dover Publications, 1965.
  20. 20. D. Calvetti, F. Pitolli, E. Somersalo, and B. Vantaggi, Bayes meets Krylov: preconditioning CGLS for underdetermined systems, SIAM Re- view, vol. 60, no. 2, 2018, DOI 10.1137/15M1055061.10.1137/151055061
Language: English
Page range: 104 - 120
Submitted on: Jan 12, 2017
Accepted on: Feb 27, 2018
Published on: Mar 24, 2018
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 L. Pezza, F. Pitolli, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.