Have a personal or library account? Click to login
Semi-Analytical method for the pricing of barrier options in case of time-dependent parameters (with Matlab® codes) Cover

Semi-Analytical method for the pricing of barrier options in case of time-dependent parameters (with Matlab® codes)

By: C. Guardasoni  
Open Access
|Mar 2018

References

  1. 1. F. Black and M. Scholes, The pricing of options and corporate liabilities, The Journal of Political Economy, vol. 81, no. 3, pp. 637-654, 1973.10.1086/260062
  2. 2. M. Danilo and V. Spokoinyi, Estimation of time dependent volatility via local change point analysis, Annals of Statistics, vol. 32, no. 2, p. 577>602, 2004.
  3. 3. L. Goldentayer, F. Klebaner, and R. Liptser, Tracking volatility, Prob- lems of Information Transmission, vol. 41, no. 3, pp. 212-229, 2005.10.1007/s11122-005-0026-2
  4. 4. S. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Review of Financial Studies, vol. 6, pp. 327-343, 1993.10.1093/rfs/6.2.327
  5. 5. D. Bates, Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options, The Review of Financial Studies, vol. 9, no. 1, pp. 69-107, 1996.10.1093/rfs/9.1.69
  6. 6. L. Feng and V. Linetsky, Pricing options in jump-diffusion models: an extrapolation approach, Oper. Res., vol. 56, no. 2, pp. 304-325, 2008.10.1287/opre.1070.0419
  7. 7. F. Fang and C. W. Oosterlee, A Fourier-based valuation method for Bermudan and barrier options under Heston's model, SIAM J. Financial Math., vol. 2, no. 1, pp. 439-463, 2011.10.1137/100794158
  8. 8. G. Fusai, G. Germano, and D. Marazzina, Spitzer identity, Wiener- Hopf factorization and pricing of discretely monitored exotic options, European J. Oper. Res., vol. 251, no. 1, pp. 124-134, 2016.10.1016/j.ejor.2015.11.027
  9. 9. C. Guardasoni and S. Sanfelici, A boundary element approach to barrier option pricing in Black-Scholes framework, Int. J. Comput. Math., vol. 93, no. 4, pp. 696-722, 2016.10.1080/00207160.2015.1020304
  10. 10. C. Guardasoni and S. Sanfelici, Fast Numerical Pricing of Barrier Options under Stochastic Volatility and Jumps, SIAM J. Appl. Math., vol. 76, no. 1, pp. 27-57, 2016.10.1137/15100504X
  11. 11. F. Rapisarda, Pricing barriers on underlyings with time-dependent parameters, tech. rep., Banca IMI, 2005.10.2139/ssrn.2138100
  12. 12. G. Doreitner, P. Schneider, K. Hawlitschek, and A. Buch, Pricing options with Green's functions when volatility, interest rate and barriers depend on time, Quantitative Finance, vol. 8, no. 2, pp. 119-133, 2008.10.1080/14697680601161480
  13. 13. C. Lo, H. Lee, and C. Hui, A simple approach for pricing barrier options with time-dependent parameters, Quantitative Finance, vol. 3, pp. 98- 107, 2003.10.1088/1469-7688/3/2/304
  14. 14. C. Lo and C. Hui, Valuing double barrier options with time-dependent parameters by fourier series expansion, International Journal of Applied Mathematics, vol. 36, no. 1.
  15. 15. L. Fatone, M. Recchioni, and F. Zirilli, A perturbative formula to price barrier options with time-dependent parameters in the Black and Scholes world, Journal of Risk, vol. 10, pp. 131-146, Winter 2007/2008.10.21314/JOR.2007.164
  16. 16. L. Ballestra and G. Pacelli, A very fast and accurate boundary element method for options with moving barrier and time-dependent rebate, Applied Numerical Mathematics, vol. 77, pp. 1 - 15, 2014.10.1016/j.apnum.2013.10.005
  17. 17. F. Rapisarda, Barrier options on underlyings with time-dependent parameters: a perturbation expansion approach, tech. rep., Banca IMI, 2005.10.2139/ssrn.682184
  18. 18. S. Sanfelici, Comparison of numerical methods for the approximation of option price, tech. rep., University of Parma, 2001.
  19. 19. P. Wilmott, J. Dewynne, and S. Howison, Option Pricing: Mathematical models and computation. Oxford Financial Press, 1993.
  20. 20. E. Reiner and M. Rubinstein, Breaking down the barriers, Risk, vol. 4, pp. 28-35, 1991.
  21. 21. A. Friedman, Partial Differential Equations of Parabolic type. Englewood Cliffs, N.Y.: Prentice-Hall Inc, 1964.
  22. 22. A. Friedman, Stochastic Differential Equations and Applications. Academic Press, 1975.10.1016/B978-0-12-268201-8.50010-4
  23. 23. A. Mijatović, Local time and the pricing of time-dependent barrier options, Finance and Stochastics, vol. 14, no. 1, pp. 13-48, 2010.10.1007/s00780-008-0077-5
  24. 24. A. Aimi, M. Diligenti, and C. Guardasoni, Numerical integration schemes for space-time hypersingular integrals in energetic Galerkin BEM, Numerical Algorithms, vol. 55, no. 2, pp. 145-170, 2010.10.1007/s11075-010-9371-3
  25. 25. P. Wilmott, Derivatives: the theory and practice of financial engineering. John Wiley and Sons, 2000.
  26. 26. R. U. Seydel, Tools for computational finance. Universitext, Springer-Verlag, Berlin, fourth ed., 2009.
  27. 27. R. Rannacher, Finite element solution of diffusion problems with irregular data, Numer. Math., vol. 43, no. 2, pp. 309-327, 1984.10.1007/BF01390130
  28. 28. G. Fusai, S. Sanfelici, and A. Tagliani, Practical Problems in the Numerical Solution of PDE's in Finance, Rendiconti per gli Studi Economici Quantitativi, pp. 105-132, 2002.
  29. 29. M. Giles and R.Carter, Convergence analysis of Crank-Nicolson and Rannacher time-marching, J. Comput. Finance, vol. 9, no. 4, pp. 89- 112, 2006.10.21314/JCF.2006.152
  30. 30. D. Pooley, K. Vetzal, and P. Forsyth, Convergence remedies for nonsmooth payoffs in option pricing, Journal of Computational Finance, vol. 6, no. 4, pp. 25-40, 2003.10.21314/JCF.2003.101
  31. 31. R. Zvan, K. R. Vetzal, and P. A. Forsyth, PDE methods for pricing barrier options, J. Econom. Dynam. Control, vol. 24, no. 11-12, pp. 1563- 1590, 2000.
Language: English
Page range: 42 - 67
Submitted on: Jan 12, 2017
Accepted on: Feb 2, 2018
Published on: Mar 24, 2018
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 C. Guardasoni, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.