Have a personal or library account? Click to login
Loss of mass and performance in skeletal muscle tissue: a continuum model Cover

Loss of mass and performance in skeletal muscle tissue: a continuum model

Open Access
|Feb 2018

References

  1. 1. A. Musesti, G. G. Giusteri, and A. Marzocchi, Predicting Ageing: On the Mathematical Modelization of Ageing Muscle Tissue, in Active Age- ing and Healthy Living (G. R. et al., ed.), IOS press, 2014. Chapter 17.
  2. 2. G. Giantesio and A. Musesti, A continuum model of skeletal muscle tissue with loss of activation, in Multiscale Models in Mechano and Tu- mor Biology: Modeling, Homogenization, and Applications (A. Gerisch, R. Penta, and J. Lang, eds.), vol. 122 of Lecture Notes in Computational Science and Engineering, Springer, in press.
  3. 3. L. A. Taber and R. Perucchio, Modeling heart development, Journal of Elasticity, vol. 61, no. 1, pp. 165-197, 2000.10.1023/A:1011082712497
  4. 4. G. Giantesio and A. Musesti, Strain-dependent internal parameters in hyperelastic biological materials, International Journal of Non-Linear Mechanics, vol. 95, pp. 162-167, 2017.10.1016/j.ijnonlinmec.2017.06.012
  5. 5. D. Hawkins and M. Bey, A Comprehensive Approach for Studying Muscle-Tendon Mechanics, ASME Journal of Biomechanical Engineer- ing, vol. 116, pp. 51-55, 1994.10.1115/1.2895704
  6. 6. R. L. Lieber and S. R. Ward, Skeletal muscle design to meet functional demands, Philosophical Transactions of the Royal Society of London B: Biological Sciences, vol. 366, no. 1570, pp. 1466-1476, 2011.
  7. 7. J. Schröder and P. Nefi, Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions, International Journal of Solids and Structures, vol. 40, pp. 401-445, 2003.10.1016/S0020-7683(02)00458-4
  8. 8. A. E. Ehret and M. Itskov, Modeling of anisotropic softening phenomena: Application to soft biological tissues, International Journal of Plas- ticity, vol. 25, pp. 901-919, 2009.10.1016/j.ijplas.2008.06.001
  9. 9. A. E. Ehret, M. Böl, and M. Itskov, A continuum constitutive model for the active behaviour of skeletal muscle, Journal of the Mechanics and Physics of Solids, vol. 59, no. 3, pp. 625-636, 2011.10.1016/j.jmps.2010.12.008
  10. 10. A. E. Ehret and M. Itskov, A polyconvex hyperelastic model for fiberreinforced materials in application to soft tissues, Journal of Materials Science, vol. 42, pp. 8853-8863, 2007.
  11. 11. P. Nardinocchi and L. Teresi, On the Active Response of Soft Living Tissues, Journal of Elasticity, vol. 88, no. 1, pp. 27-39, 2007.10.1007/s10659-007-9111-7
  12. 12. D. Ambrosi and S. Pezzuto, Active Stress vs. Active Strain in Mechanobiology: Constitutive Issues, Journal of Elasticity, vol. 107, pp. 199-212, 2012.10.1007/s10659-011-9351-4
  13. 13. A. Gizzi, C. Cherubini, S. Filippi, and A. Pandolfi, Theoretical and numerical modeling of nonlinear electromechanics with applications to biological active media, Communications in Computational Physics, vol. 17, no. 1, pp. 93-126, 2015.10.4208/cicp.091213.260614a
  14. 14. A. Gizzi, A. Pandolfi, and M. Vasta, Viscoelectromechanics modeling of intestine wall hyperelasticity, International Journal for Computational Methods in Engineering Science and Mechanics, vol. 17, no. 3, pp. 143- 155, 2016.10.1080/15502287.2015.1082678
  15. 15. C. A. Oatis, Kinesiology. The Mechanics and Pathomechanics of Human Movement. Lippincott Williams & Wilkins, 2nd ed., 2009.
  16. 16. J. L. van Leeuwen, Optimum power output and structural design of sarcomeres, Journal of Theoretical Biology, vol. 149, pp. 229-256, 1991.10.1016/S0022-5193(05)80279-6
  17. 17. M. Böl and S. Reese, Micromechanical modelling of skeletal muscles based on the finite element method, Computer Methods in Biomechanics and Biomedical Engineering, vol. 11, pp. 489-504, 2008.10.1080/10255840701771750
  18. 18. T. Heidlauf and O. Röhrle, A multiscale chemo-electro-mechanical skeletal muscle model to analyze muscle contraction and force generation for difierent muscle fiber arrangements, Frontiers in Physiology, vol. 5, p. 498, 2014.10.3389/fphys.2014.00498
  19. 19. A. J. Cruz-Jentoft, J. P. Baeyens, J. M. Bauer, Y. Boirie, T. Cederholm, F. Landi, F. C. Martin, J. P. Michel, Y. Rolland, S. M. Schneider, E. Topinkovfia, M. Vandewoude, and M. Zamboni, Sarcopenia: European consensus on definition and diagnosis, Age and Ageing, vol. 39, pp. 412- 423, 2010.10.1093/ageing/afq034
  20. 20. T. Lang, T. Streeper, P. Cawthon, K. Baldwin, D. R. Taafie, and T. B. Harris, Sarcopenia: etiology, clinical consequences, intervention, and assessment, Osteoporosis International, vol. 21, pp. 543-559, 2010.10.1007/s00198-009-1059-y
  21. 21. S. von Haehling, J. E. Morley, and S. D. Anker, An overview of sarcopenia: facts and numbers on prevalence and clinical impact, Journal of Cachexia, Sarcopenia and Muscle, vol. 1, pp. 129-133, 2010.10.1007/s13539-010-0014-2
  22. 22. A. DiCarlo and S. Quiligotti, Growth and balance, Mechanics Research Communications, vol. 29, no. 6, pp. 449-456, 2002.10.1016/S0093-6413(02)00297-5
Language: English
Page range: 1 - 19
Submitted on: Dec 16, 2016
Accepted on: Dec 18, 2017
Published on: Feb 28, 2018
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Giulia Giantesio, Alfredo Marzocchi, Alessandro Musesti, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.