Have a personal or library account? Click to login
Hydrodynamic limits of kinetic equations for polyatomic and reactive gases Cover

Hydrodynamic limits of kinetic equations for polyatomic and reactive gases

By: M. Bisi and  G. Spiga  
Open Access
|Mar 2017

References

  1. 1. T. K. Bose, High Temperature Gas Dynamics. Springer, 2003.10.1007/978-3-662-07762-7
  2. 2. E. Nagnibeda and E. Kustova, Non-Equilibrium Reacting Gas Flows. Springer, 2009.10.1007/978-3-642-01390-4
  3. 3. I. Müller and T. Ruggeri, Rational Extended Thermodynamics. Springer, 1998.10.1007/978-1-4612-2210-1
  4. 4. V. Giovangigli, Multicomponent Flow Modeling. Birk¨auser, 1999.10.1007/978-1-4612-1580-6
  5. 5. N. Xystris and J. Dahler, Kinetic theory of simple reacting spheres, The Journal of Chemical Physics, vol. 68, pp. 387-401, 1978.10.1063/1.435772
  6. 6. A. Rossani and G. Spiga, A note on the kinetic theory of chemically reacting gases, Physica A, vol. 272, pp. 563-573, 1999.10.1016/S0378-4371(99)00336-2
  7. 7. R. Monaco, M. Pandolfi Bianchi, and A. J. Soares, BGK-type models in strong reaction and kinetic chemical equilibrium regimes, Journal of Physics A, vol. 38, pp. 10413-10431, 2005.
  8. 8. J. F. Bourgat, L. Desvillettes, P. Le Tallec, and B. Perthame, Microreversible collisions for polyatomic gases and Boltzmann’s theorem, European Journal of Mechanics - B/Fluids, vol. 13, pp. 237-254, 1994.
  9. 9. W. Marques, Light scattering from extended kinetic models: polyatomic ideal gases, Physica A, vol. 264, pp. 40-51, 1999.10.1016/S0378-4371(98)00427-0
  10. 10. A. Chikhaoui, J. P. Dudon, S. Genieys, E. V. Kustova, and E. A. Nagnibeda, Multitemperature kinetic model for heat transfer in reacting gas mixture flows, Physics of Fluids, vol. 12, pp. 220-232, 2000.10.1063/1.870302
  11. 11. T. Ruggeri and M. Sugiyama, Rational Extended Thermodynamics beyond the Monatomic Gas. Springer, 2015.10.1007/978-3-319-13341-6
  12. 12. L. Desvillettes, R. Monaco, and F. Salvarani, A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions, European Journal of Mechanics - B/Fluids, vol. 24, pp. 219-236, 2005.10.1016/j.euromechflu.2004.07.004
  13. 13. M. Groppi and G. Spiga, Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas, Journal of Mathematical Chemistry, vol. 26, pp. 197-219, 1999.10.1023/A:1019194113816
  14. 14. S. Chapman and T. G. Cowling, The Mathematical Theory of Non- Uniform Gases. Cambridge University Press, 1970.
  15. 15. P. Bhatnagar, E. Gross, and K. Krook, A model for collision processes in gases, Physical Review, vol. 94, pp. 511-525, 1954.10.1103/PhysRev.94.511
  16. 16. P.Welander, On the temperature jump in a rarefied gas, Arkyv f¨or Fysik, vol. 7, pp. 507-553, 1954.
  17. 17. A. Bellouquid, J. Calvo, J. Nieto, and J. Soler, On the relativistic BGK- Boltzmann model: asymptotics and hydrodynamics, Journal of Statistical Physics, vol. 149, pp. 284-316, 2012.10.1007/s10955-012-0600-0
  18. 18. F. J. McCormack, Construction of linearized kinetic models for gaseous mixtures and molecular gases, Physics of Fluids, vol. 16, pp. 2095-2105, 1973.
  19. 19. P. Andries, K. Aoki, and B. Perthame, A consistent BGK type model for gas mixtures, Journal of Statistical Physics, vol. 106, pp. 993-1018, 2002.10.1023/A:1014033703134
  20. 20. V. Garz´o and A. Santos, Kinetic Theory of Gases in Shear Flows. Nonlinear Transport. Springer, 2003.10.1007/978-94-017-0291-1
  21. 21. S. Brull and J. Schneider, On the ellipsoidal statistical model for polyatomic gases, Continuum Mechanics and Thermodynamics, vol. 20, pp. 489-508, 2009.10.1007/s00161-009-0095-3
  22. 22. B. Rahimi and H. Struchtrup, Macroscopic and kinetic modelling of rarefied polyatomic gases, Journal of Fluid Mechanics, vol. 806, pp. 437-505, 2016.10.1017/jfm.2016.604
  23. 23. M. Groppi, G. Russo, and G. Stracquadanio, Boundary conditions for semi-Lagrangian methods for the BGK model, Communications in Applied and Industrial Mathematics, vol. 7, pp. 135-161, 2016.10.1515/caim-2016-0025
  24. 24. M. Bisi, M. Groppi, and G. Spiga, Kinetic Bhatnagar-Gross-Krook model for fast reactive mixtures and its hydrodynamic limit, Physical Review E, vol. 81, 036327, 2010.
  25. 25. M. Bisi and M. J. C´aceres, A BGK relaxation model for polyatomic gas mixtures, Communications in Mathematical Sciences, vol. 14, pp. 297-325, 2016.10.4310/CMS.2016.v14.n2.a1
  26. 26. M. Groppi and G. Spiga, A Bhatnagar-Gross-Krook-type approach for chemically reacting gas mixtures, Physics of Fluids, vol. 16, pp. 4273-4284, 2004.
  27. 27. M. Bisi and G. Spiga, On kinetic models for polyatomic gases and their hydrodynamic limits, Ricerche di Matematica, doi:10.1007/s11587-016-0289-5, in press.
  28. 28. J. R. Mika and J. Banasiak, Singularly Perturbed Evolution Equations with Applications to Kinetic Theory. World Scientific, 1995.
  29. 29. T. Arima, T. Ruggeri, M. Sugiyama and S. Taniguchi, Nonlinear extended thermodynamics of real gases with 6 fields, International Journal of Non-Linear Mechanics, vol. 72, pp. 6-15, 2015.10.1016/j.ijnonlinmec.2015.02.005
  30. 30. T. Arima, S. Taniguchi, T. Ruggeri, andM. Sugiyama, Extended thermodynamics of real gases with dynamic pressure: An extension of Meixner’s theory, Physics Letters A, vol. 376, pp. 2799-2803, 2012.
  31. 31. G. M. Kremer, M. Pandolfi Bianchi, and A. J. Soares, A relaxation kinetic model for transport phenomena in a reactive flow, Physics of Fluids, vol. 16, 037104, 2006.
  32. 32. M. Groppi, S. Rjasanow, and G. Spiga, A kinetic relaxation approach to shock structure in fast reactive mixtures, Journal of Statistical Mechanics: Theory and Experiment, vol. 2009, P10010, 2009.
  33. 33. S. R. De Groot and P. Mazur, Nonequilibrium Thermodynamics. North- Holland, 1962.
Language: English
Page range: 23 - 42
Submitted on: Dec 5, 2016
Accepted on: Feb 8, 2017
Published on: Mar 22, 2017
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 M. Bisi, G. Spiga, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.