Have a personal or library account? Click to login
A coherent modeling procedure to describe cell activation in biological systems Cover

A coherent modeling procedure to describe cell activation in biological systems

Open Access
|Mar 2017

References

  1. 1. O. Ilina and P. Friedl, Mechanisms of collective cell migration at a glance, J. Cell. Sci., vol. 122, pp. 3203–3208, 2009.
  2. 2. A. A. Khalil and P. Friedl, Determinants of leader cells in collective cell migration, Integr. Biol., vol. 2, pp. 568–574, 2010.10.1039/c0ib00052c20886167
  3. 3. V. T. Boekhorst, L. Preziosi, and P. Friedl, Plastiticy of cell migration in vivo and in silico, Annu. Rev. Cell Dev. Biol., vol. 32, pp. 491–526, 2016.10.1146/annurev-cellbio-111315-12520127576118
  4. 4. P. Friedl and D. Gilmour, Collective cell migration in morphogenesis, regeneration and cancer, Nat. Rev. Mol. Cell. Biol., vol. 10, pp. 445–457, 2009.10.1038/nrm272019546857
  5. 5. Z. J. Liu, T. Shirakawa, Y. Li, A. Soma, M. Oka, G. P. Dotto, R. M. Fairman, O. C. Velazquez, and M. Herlyn, Regulation of notch1 and dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis, Mol. Cell. Biol., vol. 23, pp. 14–25, 2003.10.1128/MCB.23.1.14-25.200314066712482957
  6. 6. M. Scianna, E. Bassino, and L. Munaron, A cellular potts model analyzing di_erentiated cell behavior during in vivo vascularization of a hypoxic tissue, Comput. Biol. Med., vol. 63, pp. 143–156, 2015.10.1016/j.compbiomed.2015.05.02026079199
  7. 7. M. Scianna, C. G. Bell, and L. Preziosi, A review of mathematical models for the formation of vascular networks, J. Theor. Biol., vol. 333, pp. 174–209, 2013.10.1016/j.jtbi.2013.04.03723684907
  8. 8. K. M. Burleson, M. P. Boente, S. E. Parmabuccian, and A. P. Skubitz, Disaggregation and invasion of ovarian carcinoma ascites spheroids, J. Transl. Med., vol. 4, pp. 1–16, 2006.10.1186/1479-5876-4-6139787616433903
  9. 9. K. Shield, M. L. Ackland, N. Ahnmed, and G. E. Rice, Multicellular spheroids in ovarian cancer metastases: biology and pathology, Gynec. Oncol., vol. 113, pp. 143–148, 2008.10.1016/j.ygyno.2008.11.03219135710
  10. 10. A. Colombi, M. Scianna, and L. Preziosi, Coherent modelling switch between pointwise and distributed representations of cell aggregates, J. Math. Biol., 2016, in press. doi: 10.1007/s00285-016-1042-0.
  11. 11. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell, 4th ed. Garland Science, 2002.
  12. 12. P. Carmeliet and R. K. Jain, Angiogenesis in cancer and other diseases, Nature, vol. 407, pp. 249–257, 2000.10.1038/3502522011001068
  13. 13. P. Carmeliet, Angiogenesis in life, disease and medicine, Nature, vol. 438, pp. 932–936, 2005.10.1038/nature04478
  14. 14. M. Scianna and L. Preziosi, Multiscale developments of cellular potts models, Mult. Model. Sim., vol. 10, pp. 342–382, 2012.10.1137/100812951
  15. 15. A. Colombi, M. Scianna, and A. Tosin, Di_erentiated cell behavior: a multiscale approach using measure theory, J. Math. Biol., 2015, in press. doi: 10.1007/s00285-014-0846-z.
  16. 16. A. Colombi, M. Scianna, and L. Preziosi, A measure-theoretic model for collective cell migration and aggregation, Math. Model. Nat. Phenom., vol. 1, no. 10, pp. 32–63, 2015.10.1051/mmnp/201510101
  17. 17. N. J. Armstrong, K. Painter, and J. A. Sherratt, A continuum approach to modelling cell-cell adhesion, J. Theor. Biol., vol. 243, pp. 98–113, 2006.10.1016/j.jtbi.2006.05.030
  18. 18. N. J. Armstrong, K. Painter, and J. A. Sherratt, Adding adhesion to a chemical signaling model for somite formation, Bull. Math. Biol., vol. 71, pp. 1–24, 2009.10.1007/s11538-008-9350-1
  19. 19. K. J. Painter, J. M. Bloom_eld, J. A. Sherratt, and A. Gerisch, A non-local model for contact attraction and repulsion in heterogeneous cell populations, Bull. Math. Biol., vol. 77, no. 2, pp. 1132–1165, 2015.
  20. 20. H. S. Bell, I. R. Whittle, M. Walker, H. A. Leaver, and S. B. Wharton, The development of necrosis and apoptosis in glioma: experimental findings using spheroid culture systems, Neuropathol. Appl. Neurobiol., vol. 27, pp. 291–304, 2001.10.1046/j.0305-1846.2001.00319.x
  21. 21. M. L. Puiffe, C. L. Page, A. Filali-Mouhim, M. Zietarska, V. Ouellet, P. N. Toniny, M. Chevrette, D. M. Provencher, and A. M. Mes-Masson, Characterization of ovarian cancer ascites on cell invasion, proliferation, spheroid formation, and gene expression in an in vitro model of epithelial ovarian cancer, Neoplasia, vol. 9, pp. 820–829, 2007.10.1593/neo.07472
  22. 22. A. D. Luca, N. Arena, L. M. Sena, and E. Medico, Met overexpression confers hgf-dependent invasive phenotype to human thyroid carcinoma cells in vitro, J. Cell. Physiol., vol. 180, no. 3, pp. 365–371, 1999.10.1002/(SICI)1097-4652(199909)180:3<;365::AID-JCP7>3.0.CO;2-B
  23. 23. M. F. D. Renzo, M. Oliviero, R. P. Narsimhan, S. Bretti, S. Giordano, E. Medico, P. Gaglia, P. Zara, and P. M. Comoglio, Expression of the met/hgf receptor in normal and neoplastic human tissues, Oncogene, vol. 6, pp. 1997–2003, 1991.
  24. 24. J. M. Brown, Tumor microenvironment and the response to anticancer therapy, Cancer Biol. Ther., vol. 1, pp. 453–458, 2002.10.4161/cbt.1.5.157
Language: English
Page range: 1 - 22
Submitted on: Nov 28, 2016
Accepted on: Feb 16, 2017
Published on: Mar 22, 2017
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 Marco Scianna, Annachiara Colombi, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.