Have a personal or library account? Click to login
A mass conservative TR-BDF2 semi-implicit semi-Lagrangian DG discretization of the shallow water equations on general structured meshes of quadrilaterals Cover

A mass conservative TR-BDF2 semi-implicit semi-Lagrangian DG discretization of the shallow water equations on general structured meshes of quadrilaterals

By: Giovanni Tumolo  
Open Access
|Oct 2016

References

  1. 1. G. Tumolo and L. Bonaventura, A semi-implicit, semi-Lagrangian discontinuous Galerkin framework for adaptive numerical weather prediction., Quarterly Journal of the Royal Meteorological Society, vol. 141, pp. 2582-2601, October 2015.
  2. 2. J. Thuburn, Some conservation issues for the dynamical cores of NWP and climate models., Journal of Computational Physics, vol. 227, pp. 3715-3730, 2008.
  3. 3. J. Thuburn, Conservation in Dynamical Cores: What, How and Why?, in Numerical Techniques for Global Atmospheric Models (P. Lauritzen, C. Jablonowski, M. Taylor, and R. Nair, eds.), vol. 80, pp. 345-356, Lecture Notes in Computational Science and Engineering, Springer, 2010.10.1007/978-3-642-11640-7_11
  4. 4. M. A. Taylor, Conservation of Mass and Energy for the Moist Atmospheric Primitive Equations on Unstructured Grids, in Numerical Techniques for Global Atmospheric Models (P. Lauritzen, C. Jablonowski, M. Taylor, and R. Nair, eds.), vol. 80, pp. 357-380, Lecture Notes in Computational Science and Engineering, Springer, 2010.10.1007/978-3-642-11640-7_12
  5. 5. L. Bonaventura, R. Redler, and R. Budich, Earth System Modelling 2: Algorithms, Code Infrastructure and Optimisation. New York: Springer Verlag, 2012.
  6. 6. V. T. Chow, Open Channel Hydraulics. New York: McGraw-Hill, 1959.
  7. 7. V. Casulli, Semi-implicit finite difference methods for the two dimensional shallow water equations., Journal of Computational Physics, vol. 86, pp. 56-74, 1990.10.1016/0021-9991(90)90091-E
  8. 8. V. Casulli and E. Cattani, Stability, accuracy and efficiency of a semi-implicit method for three-dimensional shallow water ow., Computational Mathematics and Applications, vol. 27, pp. 99-112, 1994.10.1016/0898-1221(94)90059-0
  9. 9. T. Davies, M. Cullen, A. Malcolm, M. Mawson, A. Staniforth, A. White, and N. Wood, A new dynamical core for the Met Ofice's global and regional modelling of the atmosphere., Quarterly Journal of the Royal Meteorological Society, vol. 131, pp. 1759-1782, 2005.
  10. 10. G. Tumolo, L. Bonaventura, and M. Restelli, A semi-implicit, semi-Lagrangian, p-adaptive discontinuous Galerkin method for the shallow water equations., Journal of Computational Physics, vol. 232, pp. 46-67, January 2013.10.1016/j.jcp.2012.06.006
  11. 11. M. Restelli, L. Bonaventura, and R. Sacco, A semi-Lagrangian Discontinuous Galerkin method for scalar advection by incompressible flows., Journal of Computational Physics, vol. 216, pp. 195-215, 2006.10.1016/j.jcp.2005.11.030
  12. 12. D. Williamson, J. Drake, J. Hack, R. Jacob, and P. Swarztrauber, A Standard Test Set for the Numerical Approximations to the Shallow Water Equations in Spherical Geometry., Journal of Computational Physics, vol. 102, pp. 211-224, 1992.10.1016/S0021-9991(05)80016-6
  13. 13. R. Bank, W. Coughran, W. Fichtner, E. Grosse, D. Rose, and R. Smith, Transient Simulation of Silicon Devices and Circuits, IEEE Transactions on Electron Devices., vol. 32, pp. 1992-2007, 1985.
  14. 14. M. Hosea and L. Shampine, Analysis and implementation of TR-BDF2., Applied Numerical Mathematics, vol. 20, pp. 21-37, 1996.10.1016/0168-9274(95)00115-8
  15. 15. A. Staniforth and J. Côté, Semi-lagrangian integration schemes for atmospheric models-a review., Monthly Weather Review, vol. 119, pp. 2206-2223, 1991.
  16. 16. K. W. Morton and E. Süli, Evolution-Galerkin methods and their supraconvergence.,Numerische Mathematik, vol. 71, pp. 331-355, 1995.10.1007/s002110050148
  17. 17. K. W. Morton, On the analysis of finite volume methods for evolutionary problems., SIAM Journal of Numerical Analysis, vol. 35, pp. 2195-2222, 1998.
  18. 18. F. Giraldo, The Lagrange-Galerkin spectral element method on unstructured quadrilateral grids., Journal of Computational Physics, vol. 147, pp. 114-146, 1998.10.1006/jcph.1998.6078
  19. 19. D. Xiu and G. E. Karniadakis, A semi-Lagrangian High-Order Method for Navier-Stokes Equations., Journal of Computational Physics, vol. 172, pp. 658-684, 2001.10.1006/jcph.2001.6847
  20. 20. C. Zhao, B. Hobbes, H. Mühlhaus, and A. Ord, A consistent pointsearching algorithm for solution interpolation in unstructured meshesconsisting of 4-node bilinear quadrilateral elements., International Journal of Numerical Methods in Engineering, vol. 45, pp. 1509-1526, 1999.
  21. 21. A. Allievi and R. Bermejo, A Generalized Particle Search-Locate Algorithm for Arbitrary Grids, Journal of Computational Physics, vol. 132, pp. 157-166, 1997.10.1006/jcph.1996.5604
  22. 22. Y. Saad and M. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems., SIAM Journal on Scientific and Statistical Computing, vol. 7, pp. 856-869, 1986.10.1137/0907058
  23. 23. B. Cockburn and C. Shu, The Runge-Kutta local projection P1 Discontinuous Galerkin method for scalar conservation laws., Mathematical Modelling and Numerical Analysis, vol. 25, pp. 337-361, 1991.10.1051/m2an/1991250303371
  24. 24. G. Karniadakis and S. Sherwin, Spectral hp-Element Methods for Computational Fluid Dynamics. Oxford University Press, 2005.10.1093/acprof:oso/9780198528692.001.0001
  25. 25. D. Le Roux and G. Carey, Stability-dispersion analysis of the discontinuous Galerkin linearized shallow-water system., International Journal of Numerical Methods in Fluids, vol. 48, pp. 325-347, 2005.10.1002/fld.893
  26. 26. D. Le Roux, Spurious inertial oscillations in shallow-water models., Journal of Computational Physics, vol. 231, pp. 7959-7987, 2013.
  27. 27. Y. Hasbani, E.Livne, and M.Bercovier, Finite elements and characteristics applied to advection-diffusion equations., Computers and Fluids, vol. 11, pp. 71-83, 1982.10.1016/0045-7930(83)90002-6
  28. 28. K. W. Morton, A. Priestley, and E. Süli, Stability of the Lagrange-Galerkin scheme with inexact integration., RAIRO Modellisation Matemathique et Analyse Numerique, vol. 22, pp. 625-653, 1988.10.1051/m2an/1988220406251
  29. 29. F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for numerical solution of the compressible Navier-Stokes equations., Journal of Computational Physics, vol. 131, pp. 267-279, 1997.10.1006/jcph.1996.5572
  30. 30. B. Cockburn, S. Hou, and C. Shu, The Runge-Kutta Local Projection Galerkin Finite Element Method for conservation laws IV: the multidimensional case., Mathematics of Computation, vol. 54 (190), pp. 545- 581, 1990.10.1090/S0025-5718-1990-1010597-0
  31. 31. B. Cockburn and C. Shu, The Runge-Kutta Discontinuous Galerkin method for conservation laws, V., Journal of Computational Physics, vol. 141, pp. 198-224, 1998.10.1006/jcph.1998.5892
  32. 32. M. Restelli and F. Giraldo, A conservative Discontinuous Galerkin semiimplicit formulation for the Navier-Stokes equations in nonhydrostatic mesoscale modeling., SIAM Journal of Scientific Computing, vol. 31, 10.1137/070708470
  33. 33. C. Temperton and A. Staniforth, An efficient two-time-level semi-Lagrangian semi-implicit integration scheme., Quarterly Journal of the Royal Meteorological Society, vol. 113, pp. 1025-1039, 1987.
  34. 34. A. Priestley, Exact Projections and the Lagrange-Galerkin Method: A Realistic Alternative to Quadrature., Journal of Computational Physics, vol. 112, pp. 316-333, 1994.10.1006/jcph.1994.1104
  35. 35. C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations. Philadelphia: SIAM, 1995.10.1137/1.9781611970944
  36. 36. H. Weller, Shallow Water Test Case on a Beta Plane with Dynamic Adaptivity., http://www.met.reading.ac.uk/sws02hs/inprogress/newtonadaptivitytests.pdf, Isaac Newton Institute for Mathematical Sciences, Cambridge, UK., October 2012. Multiscale Numerics for the Atmosphere and Ocean program.
  37. 37. M. Läuter, D. Handorf, and K. Dethloff, Unsteady analytical solutions of the spherical shallow water equations., Journal of Computational Physics, vol. 210, pp. 535-553, 2005. pp. 2231-2257, 2009.
Language: English
Page range: 165 - 190
Submitted on: Jun 12, 2015
|
Accepted on: Jul 29, 2015
|
Published on: Oct 1, 2016
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 Giovanni Tumolo, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.