Have a personal or library account? Click to login
The semi-Lagrangian method on curvilinear grids Cover

References

  1. 1. E. Sonnendrücker, J. Roche, P. Bertrand, and A. Ghizzo, The semilagrangian method for the numerical resolution of the vlasov equation, Journal of computational physics, vol. 149, no. 2, pp. 201-220, 1999.10.1006/jcph.1998.6148
  2. 2. J.-M. Qiu and C.-W. Shu, Conservative high order semi-lagrangian finite difference weno methods for advection in incompressible ow, Journal of Computational Physics, vol. 230, no. 4, pp. 863-889, 2011.10.1016/j.jcp.2010.04.037
  3. 3. C. K. Birdsall and A. B. Langdon, Plasma physics via computer simulation. CRC Press, 2004.
  4. 4. J. P. Verboncoeur, Particle simulation of plasmas: review and advances, Plasma Physics and Controlled Fusion, vol. 47, no. 5A, p. A231, 2005.10.1088/0741-3335/47/5A/017
  5. 5. C.-Z. Cheng and G. Knorr, The integration of the vlasov equation in configuration space, Journal of Computational Physics, vol. 22, no. 3, pp. 330-351, 1976.10.1016/0021-9991(76)90053-X
  6. 6. A. Staniforth and J. Côté, Semi-lagrangian integration schemes for atmospheric models-a review, Monthly weather review, vol. 119, no. 9, pp. 2206-2223, 1991.
  7. 7. N. Besse, Convergence of a semi-lagrangian scheme for the onedimensional vlasov-poisson system, SIAM Journal on Numerical Analysis, vol. 42, no. 1, pp. 350-382, 2004.10.1137/S0036142902410775
  8. 8. N. Besse and M. Mehrenberger, Convergence of classes of high-order semi-lagrangian schemes for the vlasov-poisson system, Mathematics of computation, vol. 77, no. 261, pp. 93-123, 2008.10.1090/S0025-5718-07-01912-6
  9. 9. F. Charles, B. Després, and M. Mehrenberger, Enhanced convergence estimates for semi-lagrangian schemes application to the vlasov-poisson equation, SIAM Journal on Numerical Analysis, vol. 51, no. 2, pp. 840-863, 2013.10.1137/110851511
  10. 10. N. Besse and E. Sonnendrücker, Semi-lagrangian schemes for the vlasov equation on an unstructured mesh of phase space, Journal of Computational Physics, vol. 191, no. 2, pp. 341-376, 2003.10.1016/S0021-9991(03)00318-8
  11. 11. T. Nakamura, R. Tanaka, T. Yabe, and K. Takizawa, Exactly conservative semi-lagrangian scheme for multi-dimensional hyperbolic equations with directional splitting technique, Journal of Computational Physics, vol. 174, no. 1, pp. 171-207, 2001.10.1006/jcph.2001.6888
  12. 12. N. Crouseilles, M. Mehrenberger, and E. Sonnendrücker, Conservative semi-lagrangian schemes for vlasov equations, Journal of Computational Physics, vol. 229, no. 6, pp. 1927-1953, 2010.
  13. 13. T. Umeda, Y. Nariyuki, and D. Kariya, A non-oscillatory and conservative semi-lagrangian scheme with fourth-degree polynomial interpolation for solving the vlasov equation, Computer Physics Communications, vol. 183, no. 5, pp. 1094-1100, 2012.
  14. 14. N. Crouseilles, T. Respaud, and E. Sonnendrücker, A forward semilagrangian method for the numerical solution of the vlasov equation, Computer Physics Communications, vol. 180, no. 10, pp. 1730-1745, 2009.
  15. 15. J.-M. Qiu and C.-W. Shu, Positivity preserving semi-lagrangian discontinuous galerkin formulation: theoretical analysis and application to the vlasov-poisson system, Journal of Computational Physics, vol. 230, no. 23, pp. 8386-8409, 2011.
  16. 16. J. A. Rossmanith and D. C. Seal, A positivity-preserving high-order semi-lagrangian discontinuous galerkin scheme for the vlasov-poisson equations, Journal of Computational Physics, vol. 230, no. 16, pp. 6203-6232, 2011.
  17. 17. M. Gutnic, M. Haefele, I. Paun, and E. Sonnendrücker, Vlasov simulations on an adaptive phase-space grid, Computer Physics Communications, vol. 164, no. 1, pp. 214-219, 2004.10.1016/j.cpc.2004.06.073
  18. 18. N. Besse, G. Latu, A. Ghizzo, E. Sonnendrücker, and P. Bertrand, A wavelet-mra-based adaptive semi-lagrangian method for the relativistic vlasov-maxwell system, Journal of Computational Physics, vol. 227, no. 16, pp. 7889-7916, 2008.
  19. 19. M. C. Pinto and M. Mehrenberger, Convergence of an adaptive semilagrangian scheme for the vlasov-poisson system, Numerische Mathematik, vol. 108, no. 3, pp. 407-444, 2008.10.1007/s00211-007-0120-z
  20. 20. W. Guo and J.-M. Qiu, Hybrid semi-lagrangian finite element-finite difference methods for the vlasov equation, Journal of Computational Physics, vol. 234, pp. 108-132, 2013.10.1016/j.jcp.2012.09.014
  21. 21. J.-M. Qiu and C.-W. Shu, Conservative semi-lagrangian finite difference weno formulations with applications to the vlasov equation, Communications in Computational Physics, vol. 10, no. 4, p. 979, 2011.10.4208/cicp.180210.251110a
  22. 22. T. Arber and R. Vann, A critical comparison of eulerian-grid-based vlasov solvers, Journal of computational physics, vol. 180, no. 1, pp. 339 357, 2002.10.1006/jcph.2002.7098
  23. 23. F. Filbet and E. Sonnendrücker, Comparison of eulerian vlasov solvers, Computer Physics Communications, vol. 150, no. 3, pp. 247-266, 2003.10.1016/S0010-4655(02)00694-X
  24. 24. V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, et al., A drift-kinetic semi-lagrangian 4d code for ion turbulence simulation, Journal of Computational Physics, vol. 217, no. 2, pp. 395-423, 2006.10.1016/j.jcp.2006.01.023
  25. 25. V. Grandgirard, Y. Sarazin, X. Garbet, G. Dif-Pradalier, P. Ghendrih, N. Crouseilles, G. Latu, E. Sonnendrücker, N. Besse, and P. Bertrand, Computing itg turbulence with a full-f semi-lagrangian code, Communications in Nonlinear Science and Numerical Simulation, vol. 13, no. 1, pp. 81-87, 2008.10.1016/j.cnsns.2007.05.016
  26. 26. G. Latu, N. Crouseilles, V. Grandgirard, and E. Sonnendrücker, Gyrokinetic semi-lagrangian parallel simulation using a hybrid openmp/mpi programming, in Recent Advances in Parallel Virtual Machine and Message Passing Interface, pp. 356-364, Springer, 2007.10.1007/978-3-540-75416-9_48
  27. 27. P. Colella, M. R. Dorr, J. A. Hittinger, and D. F. Martin, High-order, finite-volume methods in mapped coordinates, Journal of Computational Physics, vol. 230, no. 8, pp. 2952-2976, 2011.
  28. 28. P.-O. Persson, J. Bonet, and J. Peraire, Discontinuous galerkin solution of the navier-stokes equations on deformable domains, Computer Methods in Applied Mechanics and Engineering, vol. 198, no. 17, pp. 1585- 1595, 2009.
  29. 29. J.-P. Braeunig, N. Crouseilles, V. Grandgirard, G. Latu, M. Mehrenberger, and E. Sonnendrücker, Some numerical aspects of the conservative psm scheme in a 4d drift-kinetic code, arXiv preprint arXiv:1303.2238, 2013.
  30. 30. F. Huot, A. Ghizzo, P. Bertrand, E. Sonnendrücker, and O. Coulaud, Instability of the time splitting scheme for the one-dimensional and relativistic vlasov-maxwell system, Journal of Computational Physics, vol. 185, no. 2, pp. 512-531, 2003.10.1016/S0021-9991(02)00079-7
  31. 31. B. Afeyan, F. Casas, N. Crouseilles, D. A., E. Faou, M. Mehrenberger, and E. Sonnendrücker, Simulations of kinetic electrostatic electron nonlinear (keen) waves with two-grid, variable velocity resolution and highorder time-splitting, The European Physical Journal D, vol. 68:295, pp. 1-21, 2014.10.1140/epjd/e2014-50212-6
  32. 32. Y. S. Volkov, On complete interpolation spline finding via b-splines, Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], vol. 5, pp. 334-338, 2008.
  33. 33. M. Mehrenberger, C. Steiner., L. Marradi, M. Mehrenberger, N. Crouseilles, E. Sonnendrücker, and B. Afeyan, Vlasov on gpu (vog project), ESAIM: PROCEEDINGS, vol. 43, pp. 37-58, 2013.10.1051/proc/201343003
  34. 34. C. Steiner., Numerical computation of the gyroaverage operator and cou pling with the Vlasov gyrokinetic equations. PhD thesis, IRMA, University of Strasbourg, France, December 2014.
  35. 35. C.-W. Shu, High-order finite difference and finite volume weno schemes and discontinuous galerkin methods for cfd, International Journal of Computational Fluid Dynamics, vol. 17, no. 2, pp. 107-118, 2003.10.1080/1061856031000104851
  36. 36. A. Hamiaz, M. Mehrenberger, and A. Back, “Guiding center simulations on curvilinear grids.” https://hal.archives-ouvertes.fr/hal-00908500, Dec. 2014.
  37. 37. “Mudpack.” https://www2.cisl.ucar.edu/resources/legacy/mudpack.
Language: English
Page range: 99 - 137
Submitted on: May 15, 2015
|
Accepted on: Nov 13, 2015
|
Published on: Oct 1, 2016
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 Adnane Hamiaz, Michel Mehrenberger, Hocine Sellama, Eric Sonnendrücker, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.