Have a personal or library account? Click to login
Two conservative multi-tracer efficient semi-Lagrangian schemes for multiple processor systems integrated in a spectral element (climate) dynamical core Cover

Two conservative multi-tracer efficient semi-Lagrangian schemes for multiple processor systems integrated in a spectral element (climate) dynamical core

Open Access
|Oct 2016

References

  1. 1. D. L. Williamson, The evolution of dynamical cores for global atmospheric models, Journal of the Meteorological Society of Japan, vol. 85, pp. 241-269, 2007.10.2151/jmsj.85B.241
  2. 2. J. Dennis, J. Edwards, K. Evans, O. Guba, P. Lauritzen, A. Mirin, A. St-Cyr, M. Taylor, and P. Worley, CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model, International Journal of High Performance Computing Applications, vol. 26, no. 1, pp. 74-89, 2012.10.1177/1094342011428142
  3. 3. M. Taylor, J. Edwards, S. Thomas, and R. Nair, A mass and energy conserving spectral element atmopsheric dynamical core on the cubed-sphere, Journal of Physics: Conference Series, vol. 78, 2007.10.1088/1742-6596/78/1/012074
  4. 4. F. X. Giraldo, Lagrange-Galerkin methods on spherical geodesic grids: the shallow water equations, Journal of Computational Physics, vol. 160, pp. 336-368, 2000.10.1006/jcph.2000.6469
  5. 5. R. D. Nair, S. J. Thomas, and R. D. Loft, A discontinuous Galerkin global shallow water model, Monthly Weather Review, vol. 133, pp. 876 888, 2005.10.1175/MWR2903.1
  6. 6. J. M. Dennis, A. Fournier, W. F. Spotz, A. St-Cyr, M. A. Taylor, S. J. Thomas, and H. M. Tufo, High resolution mesh convergence properties and parallel efficiency of a spectral element atmospheric dynamical core, International Journal of High Performance Computing Applications, vol. 19, pp. 225-235, 2005.10.1177/1094342005056108
  7. 7. R. Sadourny, Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids, Monthly Weather Review, vol. 100, pp. 136-144, 1972.10.1175/1520-0493(1972)100<;0136:CFAOTP>2.3.CO;2
  8. 8. O. Guba, M. A. Taylor, and A. St-Cyr, Optimization-based limiters for the spectral element method, Journal of Computational Physics, vol. 267, pp. 176-195, 2014.10.1016/j.jcp.2014.02.029
  9. 9. M. Zerroukat and T. Allen, A three-dimensional monotone and conservative semi-Lagrangian scheme (SLICE-3D) for transport problems, Quarterly Journal of the Royal Meteorological Society, vol. 138, pp. 1640-1651, 2012.
  10. 10. R. D. Nair, J. S. Scroggs, and F. H. M. Semazzi, E_cient conservative global transport schemes for climate and atmospheric chemistry models, Monthly Weather Review, vol. 130, no. 8, pp. 2059-2073, 2002.
  11. 11. P. Bochev, D. Ridzal, and K. Peterson, Optimization-based remap and transport: A divide and conquer strategy for feature-preserving discretizations, Journal of Computational Physics, vol. 257, pp. 1113-1139, 2014.
  12. 12. C. Erath and R. D. Nair, A conservative multi-tracer transport scheme for spectral-element spherical grids, Journal of Computational Physics, vol. 256, no. C, pp. 118-134, 2014.10.1016/j.jcp.2013.08.050
  13. 13. C. Erath, P. H. Lauritzen, J. H. Garcia, and H. M. Tufo, Integrating a scalable and efficient semi-Lagrangian multi-tracer transport scheme in HOMME, Procedia Computer Science, vol. 9, pp. 994-1003, 2012.10.1016/j.procs.2012.04.106
  14. 14. C. G. Chen, F. Xiao, X. L. Li, and Y. Yang, A multi-moment transport model on cubed-sphere grid, International Journal for Numerical Methods in Fluids, vol. 67, no. 12, pp. 1993-2014, 2011.
  15. 15. S. T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids, Journal of Computational Physics, vol. 31, pp. 335 362, 1979.10.1016/0021-9991(79)90051-2
  16. 16. C. Chen and F. Xiao, Shallow water model on cubed-sphere by multi-moment finite volume method, Journal of Computational Physics, vol. 227, pp. 5019-5044, 2008.
  17. 17. D. R. Durran, Numerical Methods for Fluid Dynamics with Applications to Geophysics. Springer, 2010.10.1007/978-1-4419-6412-0
  18. 18. P. H. Lauritzen, R. D. Nair, and P. A. Ullrich, A conservative semi Lagrangian multi-tracer transport scheme (CSLAM) on the cubed sphere grid, Journal of Computational Physics, vol. 229, no. 5, pp. 1401 1424, 2010.
  19. 19. J. K. Dukowicz and J. R. Baumgardner, Incremental Remapping as a Transport/Advection Algorithm, Journal of Computational Physics, vol. 160, pp. 318-335, 2000.10.1006/jcph.2000.6465
  20. 20. J. K. Dukowicz, Conservative rezoning (remapping) for general quadrilateral meshes, Journal of Computational Physics, vol. 54, pp. 411-424, 1984.10.1016/0021-9991(84)90125-6
  21. 21. J. K. Dukowicz and J. Kodis, Accurate conservative remapping (rezoning) for arbitrary lagrangian-eulerian computations, SIAM Journal on Scientific and Statistical Computing, vol. 8, no. 3, pp. 305-321, 1987.10.1137/0908037
  22. 22. P. A. Ullrich, P. H. Lauritzen, and C. Jablonowski, Geometrically Exact Conservative Remapping (GECoRe): Regular latitude-longitude and cubed-sphere grids, Monthly Weather Review, vol. 137, pp. 1721-1741, 2009.
  23. 23. C. Erath, P. Lauritzen, and H. Tufo, On Mass Conservation in High-Order High-Resolution Rigorous Remapping Schemes on the Sphere, Monthly Weather Review, vol. 141, no. 6, pp. 2128-2133, 2013.
  24. 24. T. J. Barth and D. C. Jespersen, The design and application of upwind schemes on unstructured meshes, 27th Aerospace sciences meeting, vol. 89, no. 89-0366, 1989.10.2514/6.1989-366
  25. 25. L. M. Harris, P. H. Lauritzen, and R. Mittal, A flux-form version of the conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed sphere grid, Journal of Computational Physics, vol. 230, no. 4, pp. 1215-1237, 2011.
  26. 26. R. D. Nair and P. H. Lauritzen, A class of deformational ow test cases for linear transport problems on the sphere, Journal of Computational Physics, vol. 229, p. 8868, 2010.10.1016/j.jcp.2010.08.014
  27. 27. J. L. McGregor, Economical Determination of Departure Points for Semi-Lagrangian Models, Monthly Weather Review, vol. 121, no. 6, pp. 221-230, 1993.10.1175/1520-0493(1993)121<;0221:EDODPF>2.0.CO;2
  28. 28. R. D. Nair, J. S. Scroggs, and F. H. M. Semazzi, A forward-trajectory global semi-lagrangian transport scheme, Journal of Computational Physics, vol. 190, pp. 275-294, 2003.10.1016/S0021-9991(03)00274-2
  29. 29. S.-J. Lin, A vertically lagrangian finite-volume dynamical core for global models, Monthly Weather Review, vol. 132, pp. 2293-2397, 2004.
  30. 30. C. Jablonowski and D. L. Williamson, A baroclinic instability test case for atmospheric model dynamical cores, Quarterly Journal of the Royal Meteorological Society, vol. 132, pp. 2943-2975, 2006.
  31. 31. S.-J. Lin and R. B. Rood, Multidimensional flux-form semi-Lagrangian transport schemes, Monthly Weather Review, vol. 124, no. 9, pp. 2046 2070, 1996.
  32. 32. C. Schär and P. K. Smolarkiewicz, A synchronous and iterative flux correction formalism for coupled transport equations, Journal of Computational Physics, vol. 128, pp. 101-120, 1996.10.1006/jcph.1996.0198
  33. 33. E. S. Gross, L. Bonaventura, and G. Rosatti, Consistency with continuity in conservative advection schemes for free-surface models, International Journal for Numerical Methods in Fluids, vol. 38, pp. 307-327, 2002.10.1002/fld.222
Language: English
Page range: 74 - 98
Submitted on: Jun 12, 2015
|
Accepted on: Jul 29, 2015
|
Published on: Oct 1, 2016
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 Christoph Erath, Mark A. Taylor, Ramachandran D. Nair, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.