Have a personal or library account? Click to login
Lagrange–Galerkin methods for the incompressible Navier-Stokes equations: a review Cover

Lagrange–Galerkin methods for the incompressible Navier-Stokes equations: a review

Open Access
|Oct 2016

References

  1. 1. Y. Achdou, J.-L.Guermond, Convergence analysis of a finite element projection/Lagrange-Galerkin method for the incompressible Navier-Stokes equations, SIAM Journal on Numerical Analysis, vol. 37, pp. 799-826, 2000.10.1137/S0036142996313580
  2. 2. A. Allievi, R. Bermejo, A generalized particle search-locate algorithm for arbitrary grids, Journal of Computational Physics, vol. 132, pp.157166, 1997.
  3. 3. R. Bermejo, L. Saavedra, A second order in time local projection stabilized Lagrange-Galerkin method for Navier-Stokes equations at high Reynolds numbers, Computers and Mathematics with Applications, to appear, 2015.10.1007/978-3-319-32013-7_24
  4. 4. R. Bermejo, L. Saavedra, Modified Lagrange-Galerkin methods to integrate time dependent incompressible Navier-Stokes equations, SIAM Journal on Scietific Computing, to appear, 2015.10.1137/140973967
  5. 5. R. Bermejo, P. Galfian del Sastre and L. Saavedra, A second order in time modified Lagrange-Galerkin finite element method for the incompressible Navier-Stokes equations, SIAM Journal on Numerical Analysis, vol.50, pp. 3084-3109, 2012.
  6. 6. R. Bermejo and L. Saavedra, Modified Lagrange-Galerkin methods of first and second order in time for convection-diffusion problems, Numerische Mathematik, vol. 120, pp. 601-638, 2012.10.1007/s00211-011-0418-8
  7. 7. K. Boukir, Y. Maday, B. Mfietivet and E. Razanfindrakoto, A high-order characteristics/finite element method for the incompressible Navier Stokes equations, International Journal on Numerical Methods in Fluids, vol. 25, pp. 1421-1454, 1997.
  8. 8. M. Braack and T. Richter, Solutions of 3D Navier-Stokes benchmark problems with adaptive finite elements, Computers and Fluids, vol. 35, pp. 372-392, 2006.10.1016/j.compfluid.2005.02.001
  9. 9. G.C. Buscaglia, A. Dari, Implementation of the Lagrange-Galerkin method for the incompressible Navier-Stokes equations, International Journal of Numerical Methods in Fluids, vol. 15, pp. 23-36, 199210.1002/fld.1650150103
  10. 10. J. Douglas and T.F. Russell, Numerical methods for convection50 dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM Journal on Numerical Analysis, vol. 19, pp. 871-885, 1982.10.1137/0719063
  11. 11. M. El-Amrani, M. Seaid, An L2-projection for the GalerkinCharacteristic solution for incompressible ows, SIAM Journal on Scientific Computing, vol. 33, pp. 3110-3131, 2011.
  12. 12. P. Galán del Sastre, R. Bermejo, A comparison of semi-Lagrangian and Lagrange-Galerkin hp-FEM methods in convection-diffusion problems, Communications in Computational Physics, vol. 9, pp. 1020-1039, 2011.
  13. 13. J.-L. Guermond, P. Minev, Analysis of a projection/characteristic scheme for incompressible ow, Communications in Numerical Methods in Engineering, vol. 19, pp. 535-550, 2003.10.1002/cnm.611
  14. 14. J.-L. Guermond, P.Minev, J. Shen, Error analysis of pressure-correction schemes for the Navier-Stokes equations with open boundary conditions, SIAM Journal on Numerical Analysis, vol. 43, pp. 239-258, 2005.10.1137/040604418
  15. 15. J.-L. Guermond, J. Shen, On the error estimates for the rotational pressure-correction projection methods, Mathematics of Computation, vol 73 (248), pp. 1719-1737, 2004.
  16. 16. E. Hachem, B. Rivaux, T. Kloczko, H. Digonnet and T. Coupez. Stabilized finite element method for incompressible flows with high Reynolds number, Journal of Computational Physics, vol. 229, pp. 8643-8665, 2010.
  17. 17. V. John. Higher order finite element methods and multigrid solvers in a benchmark problem for the 3D Navier-Stokes equations, International Journal of Numerical Methods in Fluids, vol. 40, pp. 775-798, 2002.10.1002/fld.377
  18. 18. H. C. Ku, R. S. Hirsh and T. D. Taylor. A pseudospectral method for solution of the three-dimensional incompressible Navier-Stokes equations, Journal of Computational. Physics, vol. 70, pp. 439-462, 1987.10.1016/0021-9991(87)90190-2
  19. 19. P.D. Minev, C.R. Ethier, A characteristic/finite element algorithm for the 3D Navier-Stokes equations using unstructured grids, Computer Methods in Applied Mechanics and Engineering, vol. 178, pp. 39-50, 1999.10.1016/S0045-7825(99)00003-1
  20. 20. K. W. Morton, A. Priestley and E. Süli, Stability of the Lagrange-Galerkin method with non-exact integration, M2AN Mathematical Modelling and Numerical Analysis, vol. 22, pp. 625-653, 1988.10.1051/m2an/1988220406251
  21. 21. H. Notsu and M. Tabata, A single-step characteristic-curve finite element scheme of second order in time for the incompresible Navier-Stokes equations, Journal of Scientific Computing, vol. 38, pp. 1-14, 2009.10.1007/s10915-008-9217-5
  22. 22. A. Priestley, Exact projections and the Lagrange-Galerkin method: a realistic alternative to quadrature, Journal of Computational Physics, vol. 112, pp. 316-333, 199410.1006/jcph.1994.1104
  23. 23. O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier-Stokes equations, Numerische Mathematik, vol. 38, pp. 309-332, 1982.10.1007/BF01396435
  24. 24. H.-G. Roos, M. Stynes, Robuts Numerical Methods for Singularly Perturbed Difierential Equations, Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2008.
  25. 25. M. Schäfer and S. Turek, Benchmark computations of laminar ow around a cylinder (With support by Durst F, Krause E, Rannacher R). In: Schäfer E, editor. Flow simulation with high-performance computers II. DFG priority research program results 1993-1995. Notes numer. fluid mech, no. 52. Wiesbaden Vieweg; 547-566, 1996.10.1007/978-3-322-89849-4_39
  26. 26. C. Shu, L. Wang and Y. T. Chew Numerical computation of three dimensional incompressible Navier-Stokes equations in primitive variable form by DQ method, International Journal for Numerical Methods in Fluids, vol.43, pp. 345-368, 2003.10.1002/fld.566
  27. 27. E. Süli, Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations, Numerische Mathematik, vol.54, pp. 459-483, 1988.10.1007/BF01396329
  28. 28. L.Q. Tang, T. Cheng and T.T.H. Tsang Transient solutions for three dimensional lid-driven cavity flows by a least-squares finite element method, International Journal for Numerical Methods in Fluids, vol. 21, pp. 413-432, 1995.10.1002/fld.1650210505
  29. 29. C. Temperton, A. Staniforth, An eficient two-time-level semi Lagrangian semi-implicit integration scheme, Quaterly Journal of the Royal Meteorological Society, vol. 113, pp. 1025-1039, 1987.
  30. 30. D.Xiu and G.E.Karniadakis, A semi-Lagrangian high order method for Navier-Stokes equations, Journal of Computational Physics, vol.172, pp. 658-684, 2001.10.1006/jcph.2001.6847
Language: English
Page range: 26 - 55
Submitted on: May 10, 2015
Accepted on: Nov 9, 2015
Published on: Oct 1, 2016
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 Rodolfo Bermejo, Laura Saavedra, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.