Have a personal or library account? Click to login
Sequential quadrature methods for RDO Cover

References

  1. 1. G. Taguchi, Introduction to Quality Engineering. Asian Productivity Organization, UNIPUB, 1986.
  2. 2. G. Taguchi, S. Chowdhury, and S. Taguchi, Robust Engineering. McGraw-Hill, 2000.
  3. 3. D. Goldfarb and G. Iyengar, Robust portfolio selection problems, Mathematics of Operations Research, vol. 1, pp. 1–38, 2003.10.1287/moor.28.1.1.14260
  4. 4. A. Nilim and L. E. Ghaoui, Algorithms for air traffic flow management under stochastic environments, in Proceedings of the 2004 American Control Conference, vol. 4, pp. 3429–3434, American Automatic Control Council in cooperation with IFAC, 2004.
  5. 5. A. Messac and A. Ismail-Yahaya, Multiobjective robust design using physical programming, Structural and Multidisciplinary Optimization, vol. 23, no. 5, pp. 357–371, 2002.10.1007/s00158-002-0196-0
  6. 6. M. Diez, D. Peri, G. Fasano, and E. F. Campana, Hydroelastic optimization of a keel fin of a sailing boat: a multidisciplinary robust formulation for ship design, Structural and Multidisciplinary Optimization, vol. 6, no. 4, pp. 613–625, 2012.10.1007/s00158-012-0783-7
  7. 7. W. Barrett, Convergence properties of gaussian quadrature formulae, Coputer Journal, vol. 3, no. 4, pp. 272–277, 1961.10.1093/comjnl/3.4.272
  8. 8. A. H. Stroud, Gaussian quadrature formulas, in Prentice-Hall series in automatic computation, Prentice-Hall, 1966.
  9. 9. P. Rabinowitz, Rates of convergence of gauss, lobatto, and radau integration rules for singular integrands, Mathematics of Computation, vol. 47, no. 176, pp. 625–638, 1986.10.1090/S0025-5718-1986-0856707-6
  10. 10. T. W. Sederberg, Computer aided geometric design course notes, tech. rep., Brigham Young University, 2012.
  11. 11. J. Halton, Algorithm 247: Radical-inverse quasi-random point sequence, Tech. Rep. 12, Communications of the ACM, 1964.10.1145/355588.365104
  12. 12. D. Peri, Self-learning metamodels for optimization, Ship Technology Research, vol. 56, pp. 94–108, 2009.10.1179/str.2009.56.3.002
  13. 13. R. van’t Veer, Experimental results of motions, hydrodynamic coefficients and wave loads on the 372 catamaran model, Tech. Rep. Report 1129, Delft University of Technology, 1998.
  14. 14. T. W. Sederberg and S. R. Parry, Free form deformation of solid geometric models, in Proceedings of SIGGRAPH conference (R. A. D.C. Evans, ed.), vol. 20, pp. 151–160, ACM Press, 1986.10.1145/15886.15903
  15. 15. D. Peri, Conformal free form deformation for the optimisation of complex geometries, Ship Technology Research, vol. 59, pp. 36–41, 2012.10.1179/str.2012.59.1.004
Language: English
Page range: 23 - 47
Submitted on: Nov 11, 2014
Accepted on: Oct 12, 2015
Published on: May 20, 2016
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 Daniele Peri, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.