Have a personal or library account? Click to login
A study of the interactions between uniform and pointwise vortices in an inviscid fluid Cover

A study of the interactions between uniform and pointwise vortices in an inviscid fluid

Open Access
|May 2016

References

  1. 1. E. A. Overman and N. J. Zabusky, Evolution and merger of isolated vortex structures, Physics of Fluids, vol. 25, no. 8, pp. 1297–1305, 1982.
  2. 2. N. J. Z. M. V. Melander and A. S. Styczek, A moment model for vortex interactions of the two-dimensional euler equations. Part 1. Computational validation of a hamiltonian elliptical representation, Journal of Fluid Mechanics, vol. 167, pp. 95–115, 1986.10.1017/S0022112086002744
  3. 3. N. J. Z. M. V. Melander and J. C. McWilliams, Asymmetric vortex merger in two-dimensions: Which vortex is victorious?, Physics of Fluids, vol. 30, no. 9, pp. 2610–2612, 1987.
  4. 4. R. W. Griffiths and E. J. Hopfinger, Coalescence of geostrophic vortices, Journal of Fluid Mechanics, vol. 178, pp. 975–980, 1987.10.1017/S0022112087001125
  5. 5. D. G. Dritschel, Contour dynamics and contour surgery: numerical algorithms for extended, high-resolution modelling of vortex dynamics in two-dimensional, inviscid, incompressible flows, Computer Physics Report, vol. 10, no. 77–146, 1989.10.1016/0167-7977(89)90004-X
  6. 6. D. G. Dritschel and D. W. Waugh, Quantification of the inelastic interaction of unequal vortices in two-dimensional vortex dynamics, Physics of Fluids A, vol. 4, no. 8, pp. 1737–1744, 1992.
  7. 7. I. Yasuda and G. R. Flierl, Two-dimensional asymmetric vortex merger: contour dynamics experiment, Journal of Oceanography, vol. 51, no. 2, pp. 145–170, 1995.10.1007/BF02236522
  8. 8. M. Amoretti, D. Durkin, J. Fajans, R. Pozzoli, and M. Romé, Experimental and numerical study of asymmetric vortex merger in a pure electron plasma, in Non-neutral Plasma Physics IV (F. Anderegg, L. Schweikhard, C. F. Driscoll, and J. A. Christina, eds.), pp. 459–463, Melville, NY: American Institute of Physics, 2002.
  9. 9. L. K. Brandt and K. K. Nomura, Characterization of the interactions of two unequal co-rotating vortices, Journal of Fluid Mechanics, vol. 646, pp. 233–253, 2010.10.1017/S0022112009992849
  10. 10. F. Jing, E. Kanso, and P. K. Newton, Insights into symmetric and asymmetric vortex mergers using the core growth model, Physics of Fluids, vol. 24, no. 073101, 2012.
  11. 11. D. Z. Jin and D. H. E. Dubin, Point vortex dynamics within a background vorticity patch, Physics of Fluids, vol. 13, no. 3, pp. 677–691, 2001.10.1063/1.1343484
  12. 12. D. Durkin and F. Fajans, Experimental dynamics of a vortex within a vortex, Physical Review Letters, vol. 85, no. 19, pp. 4052–4055, 2000.
  13. 13. G. Riccardi, Intrinsic dynamics of the boundary of a two-dimensional uniform vortex, Journal of Engineering Mathematics, vol. 50, no. 1, pp. 51–74, 2004.10.1023/B:ENGI.0000042119.98370.14
  14. 14. G. Riccardi, Toward analytical contour dynamics, in Applied and Industrial Mathematics in Italy III (E. D. Bernardis, R. Spigler, and V. Valente, eds.), pp. 496–507, Singapore: World Scientific, 2009.10.1142/9789814280303_0044
  15. 15. G. Riccardi, An analytical study of the self-induced inviscid dynamics of two-dimensional uniform vortices, Acta Mechanica, vol. 224, no. 2, pp. 307–326, 2013.10.1007/s00707-012-0750-9
  16. 16. G. Riccardi and D. Durante, Velocity induced by a plane uniform vortex having the Schwarz function of its boundary with two simple poles, Journal of Applied Mathematics, Hindawi Publications, 2008.10.1155/2008/586567
  17. 17. P. J. Davis, The Schwarz function and its applications. Cambridge: Cambridge University Press, 6th ed., 1932.
  18. 18. H. T. Davis, Introduction to nonlinear differential and integral equations. New York: Dover, 1962.
  19. 19. F. G. Tricomi, Integral equations. New York: Dover, 1985.
  20. 20. M. J. Ablowitz and A. S. Fokas, Complex Variables (Introduction and Applications). Cambridge: Cambridge University Press, second ed., 2003.10.1017/CBO9780511791246
Language: English
Page range: 4 - 22
Submitted on: Nov 6, 2014
Accepted on: May 18, 2015
Published on: May 20, 2016
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 Giorgio Riccardi, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.