Have a personal or library account? Click to login
Heat transfer at nanometric scales described by extended irreversible thermodynamics Cover

Heat transfer at nanometric scales described by extended irreversible thermodynamics

By: Hatim Machrafi  
Open Access
|May 2016

References

  1. 1. D. C. Moreira, L. A. Sphaier, J. M. L. Reis, and L. C. S. Nunes, Experimental investigation of heat conduction in polyester Al2O3 and polyester CuO nanocomposites, Journal of Experimental Fluid Science, vol. 35, pp. 1458–1462, 2011.
  2. 2. J. Chen, S. L. Li, Z. L. Tao, and L. Z. Zhang, Reversible hydrogen and lithium storage of mos2 nanotubes, International Journal of Nanoscience, vol. 1, pp. 295–302, 2002.10.1142/S0219581X02000267
  3. 3. M. Wang, N. Pan, J. Wang, and S. Chen, Mesoscopic simulations of phase distribution effects on the effective thermal conductivity of microgranular porous media, Journal of Colloid and Interface Science, vol. 311, pp. 562–570, 2007.10.1016/j.jcis.2007.03.03817434521
  4. 4. M. Wang, X. Wang, J. Wang, and N. Pan, Grain size effects on effective thermal conductivity of porous materials with internal thermal contact resistance, Journal of Porous Media, vol. 16, pp. 1043–1048, 2013.
  5. 5. D. Jou, A. Sellitto, and V. A. Cimmelli, Multi-temperature mixture of phonons and electrons and nonlocal thermoelectric transport in thin layers, International Journal of Heat and Mass Transfer, vol. 71, pp. 459–468, 2014.10.1016/j.ijheatmasstransfer.2013.12.030
  6. 6. D. Jou, J. Casas-Vazquez, and G. Lebon, Extended Irreversible Thermodynamics. Springer-Verlag, 2010.10.1007/978-90-481-3074-0
  7. 7. G. Lebon, H. Machrafi, M. Grmela, and C. Dubois, An extended thermodynamic model of transient heat conduction at sub-continuum scales, Proceedings of the Royal Society A, vol. 467, pp. 3241–3256, 2011.
  8. 8. C. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, Effective thermal conductivity of particulate composites with interfacial thermal resistance, Journal of Applied Physics, vol. 81, pp. 6692–6699, 1997.
  9. 9. A. Minnich and G. Chen, Modified effective medium formulation for the thermal conductivity of nanocomposites, Applied Physics Letters, vol. 91, p. 073105, 2007.
  10. 10. G. Chen, Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices, Physics Review B, vol. 57, pp. 14958–14973, 1998.
  11. 11. D. Jou, J. Casas-Vazquez, and G. Lebon, Understanding Non-Equilibrium Thermodynamics. Springer-Verlag, 2008.
  12. 12. C. Cattaneo, Sulla conduzione, in Atti del Seminario Matematico e Fisico delle Universita di Modena, vol. 3, pp. 83–101, 1948.
  13. 13. A. Behrang, M. Grmela, C. Dubois, S. Turenne, P. G. Lafleur, and G. Lebon, Effective heat conduction in dispersion of wires, Applied Physics Letters, vol. 104, p. 063106, 2014.
  14. 14. W. Dreyer and H. Struchtrup, Heat pulse experiments revisited, Continuum Mechanics Thermodynamics, vol. 3, pp. 3–50, 2003.10.1007/BF01135371
  15. 15. S. Hess, On nonlocal constitutive relations, continued fraction expansion for the wave vector dependent diffusion coefficient, Zeitschrift Naturforschung, vol. 32a, pp. 678–684, 1977.10.1515/zna-1977-0702
  16. 16. D. Jou, J. Casas-Vazquez, G. Lebon, and M. Grmela, A phenomenological scaling approach for heat transport in nano-systems, Applied Mathematics Letters, vol. 18, pp. 963–967, 2005.10.1016/j.aml.2004.06.026
  17. 17. R. H. Perry, D. W. Green, and J. O. Maloney, Perry’s Chemical Engineers’ Handbook. McGraw-Hill, 1997.
  18. 18. J. Ordonez-Miranda and J. J. Alvarado-Gil, Thermal conductivity of nano-composites with high volume fractions of particles, Composites Science and Technology, vol. 72, pp. 853–857, 2012.10.1016/j.compscitech.2012.02.016
Language: English
Page range: 177 - 195
Submitted on: Dec 9, 2014
Accepted on: May 7, 2015
Published on: May 20, 2016
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 Hatim Machrafi, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.