Have a personal or library account? Click to login
Theories and heat pulse experiments of non-Fourier heat conduction Cover

Theories and heat pulse experiments of non-Fourier heat conduction

By: Péter Ván  
Open Access
|May 2016

References

  1. 1. D. D. Joseph and L. Preziosi, Heat waves, Reviews of Modern Physics, vol. 61, pp. 41–73, 1989.10.1103/RevModPhys.61.41
  2. 2. D. D. Joseph and L. Preziosi, Addendum to the paper ”heat waves”, Reviews of Modern Physics, vol. 62, pp. 375–391, 1990.10.1103/RevModPhys.62.375
  3. 3. D. S. Chandrasekharaiah, Hyperbolic thermoelasticity: A review of recent literature, Applied Mechanics Reviews, vol. 51, no. 12, pp. 705–729, 1998.10.1115/1.3098984
  4. 4. B. Straughan, Heat waves. New York: Springer, 2011.10.1007/978-1-4614-0493-4
  5. 5. V. A. Cimmelli, Different thermodynamic theories and different heat conduction laws, Journal of Non-Equilibrium Thermodynamics, vol. 34, no. 4, pp. 299–332, 2009.10.1515/JNETDY.2009.016
  6. 6. G. Lebon, Heat conduction at micro and nanoscales: A review through the prism of extended irreversible thermodynamics, Journal of Non-Equilibrium Thermodynamics, vol. 39, no. 1, pp. 35–59, 2014.10.1515/jnetdy-2013-0029
  7. 7. C. Cattaneo, Sulla conduzione del calore, Atti Sem. Mat. Fis. Univ. Modena, vol. 3, pp. 83–101, 1948.
  8. 8. D. Jou, J. Casas-Vázquez, and G. Lebon, Extended irreversible thermodynamics. Springer, 1996.10.1007/978-3-642-97671-1
  9. 9. I. Müller and T. Ruggeri, Rational extended thermodynamics, vol. 37. Springer Science & Business Media, 2013.
  10. 10. P. Kostädt and M. Liu, On the causality and stability of the relativistic diffusion equation, Physical Reviews D, vol. 62, p. 023003, 2000.
  11. 11. L. Herrera and D. Pavón, Why hyperbolic theories of dissipation cannot be ignored: comments on a paper by Kostädt and Liu, Physical Reviews D, vol. 64, p. 088503, 2001.
  12. 12. P. Kostädt and M. Liu, Alleged acausality of the diffusion equations: reply, Physical Reviews D, vol. 64, p. 088504, 2001.
  13. 13. G. Fichera, Is the Fourier theory of heat propagation paradoxical?, Rediconti del Circolo Matematico di Palermo, vol. XLI, pp. 5–28, 1992.10.1007/BF02844459
  14. 14. V. A. Cimmelli, On the causality requirement for diffusive-hyperbolic systems in non-equilibrium thermodynamics, Journal of Non-Equilibrium Thermodynamics, vol. 29, no. 2, pp. 125–139, 2004.10.1515/JNETDY.2004.008
  15. 15. P. Ván and T. S. Bíró, Relativistic hydrodynamics - causality and stability, The European Physical Journal - Special Topics, vol. 704, no. 2039, pp. 201–212, 2008.
  16. 16. V. Peshkov, Second sound in Helium II, J. Phys. (Moscow), vol.8, p. 381, 1944.
  17. 17. L. Tisza, Transport phenomena in helium II, Nature, vol. 141, p. 913, 1938.10.1038/141913a0
  18. 18. L. D. Landau, Two-fluid model of liquid helium II, Journal of Physics, vol. 5, no. 1, pp. 71–90, 1941.
  19. 19. H. Feshbach and P. M. Morse, Methods of theoretical physics. McGraw-Hill Interamericana, 1953.
  20. 20. M. P. Vernotte, La véritableéquation de chaleur, Comptes rendus hebdomadaires des séances de l’Académie des sciences, vol. 247, pp. 2103–5, 1958.
  21. 21. R. A. Guyer and J. A. Krumhansl, Dispersion relation for a second sound in solids, Physical Review, vol. 133, p. A1411, 1964.10.1103/PhysRev.133.A1411
  22. 22. R. A. Guyer and J. A. Krumhansl, Solution of the linearized phonon Boltzmann equation, Physical Review, vol. 148, no. 2, pp. 766–778, 1966.10.1103/PhysRev.148.766
  23. 23. R. A. Guyer and J. A. Krumhansl, Thermal conductivity, second sound and phonon hydrodynamic phenomena in nonmetallic crystals, Physical Review, vol. 148, no. 2, pp. 778–788, 1966.10.1103/PhysRev.148.778
  24. 24. C. C. Ackerman and R. A. Guyer, Temperature pulses in dielectric solids, Annals of Physics, vol. 50, no. 1, pp. 128–185, 1968.10.1016/0003-4916(68)90320-5
  25. 25. C. C. Ackerman and W. C. Overton, Second sound in solid helium-3, Physical Review Letters, vol. 22, no. 15, p. 764, 1969.10.1103/PhysRevLett.22.764
  26. 26. T. F. McNelly, S. J. Rogers, D. J. Channin, R. J. Rollefson, W. M. Goubau, G. E. Schmidt, J. A. Krumhansl, and R. O. Pohl, Heat pulses in NaF: onset of second sound, Physical Review Letters, vol. 24, no. 3, p. 100, 1970.10.1103/PhysRevLett.24.100
  27. 27. V. Narayanamurti and R. D. Dynes, Observation of second sound in Bismuth, Physical Review Letters, vol. 26, pp. 1461–1465, 1972.
  28. 28. H. E. Jackson and C. T. Walker, Thermal conductivity, second sound and phonon-phonon interactions in NaF, Physical Review B, vol. 3, no. 4, pp. 1428–1439, 1971.
  29. 29. W. Kaminski, Hyperbolic heat conduction equations for materials with a nonhomogeneous inner structure, Journal of Heat Transfer, vol. 112, pp. 555–560, 1990.10.1115/1.2910422
  30. 30. K. Mitra, S. Kumar, A. Vedavarz, and M. K. Moallemi, Experimental evidence of hyperbolic heat conduction in processed meat, Journal of Heat Transfer, vol. 117, pp. 568–573, 1995.10.1115/1.2822615
  31. 31. H. Herwig and K. Beckert, Fourier versus non-Fourier heat conduction in materials with a nonhomogeneous inner structure, Journal of Heat Transfer, vol. 122, no. 2, pp. 363–365, 2000.10.1115/1.521471
  32. 32. H. Herwig and K. Beckert, Experimental evidence about the controversy concerning Fourier or non-Fourier heat conduction in materials with a nonhomogeneous inner structure, Heat and Mass Transfer, vol. 36, no. 5, pp. 387–392, 2000.10.1007/s002310000081
  33. 33. W. Roetzel, N. Putra, and S. K. Das, Experiment and analysis for non-Fourier conduction in materials with non-homogeneous inner structure, International Journal of Thermal Sciences, vol. 42, no. 6, pp. 541–552, 2003.10.1016/S1290-0729(03)00020-6
  34. 34. E. P. Scott, M. Tilahun, and B. Vick, The question of thermal waves in heterogeneous and biological materials, Journal of Biomechanical Engineering, vol. 131, p. 074518, 2009.
  35. 35. S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, Journal of Heat Transfer, vol. 125, no. 4, pp. 567–574, 2003.10.1115/1.1571080
  36. 36. P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Thermal transport measurements of individual multiwalled nanotubes, Physical Review Letters, vol. 87, no. 21, p. 215502, 2001.
  37. 37. D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, Nanoscale thermal transport, Journal of Applied Physics, vol. 93, no. 2, pp. 793–818, 2003.10.1063/1.1524305
  38. 38. Z. M. Zhang, Nano/microscale heat transfer. New York: McGrawHill, 2007.
  39. 39. V. A. Cimmelli, A. Sellitto, and D. Jou, Nonlocal effects and second sound in a nonequilibrium steady state, Physical Review B, vol. 79, p. 014303, 2009.
  40. 40. A. Sellitto, V. A. Cimmelli, and D. Jou, Entropy flux and anomalous axial heat transport at the nanoscale, Physical Review B, vol. 87, no. 7, p. 054302, 2013.
  41. 41. M. Luzum and P. Romatschke, Conformal relativistic viscous hydrodynamics: Applications to rhic results at sNN=200 GeV$\sqrt {s_{NN}} = 200\;{\rm{GeV}}$ , Physical Review C, vol. 78, no. 3, p. 034915, 2008.
  42. 42. I. Müller, Toward relativistic thermodynamics, Archive for Rational Mechanics and Analysis, vol. 34, no. 4, pp. 259–282, 1969.10.1007/BF00248569
  43. 43. W. Israel, Nonstationary irreversible thermodynamics - causal relativistic theory, Annals of Physics, vol. 100, no. 1-2, pp. 310–331, 1976.10.1016/0003-4916(76)90064-6
  44. 44. W. Israel and J. M. Stewart, Thermodynamics of nonstationary and transient effect in a relativistic gas, Physics Letters A, vol. 58, no. 4, pp. 213–215, 1976.10.1016/0375-9601(76)90075-X
  45. 45. P. Ván and T. S. Biró, First order and generic stable relativistic dissipative hydrodynamics, Physics Letters B, vol. 709, no. 1-2, pp. 106–110, 2012.10.1016/j.physletb.2012.02.006
  46. 46. V. A. Cimmelli, D. Jou, T. Ruggeri, and P. Ván, Entropy principle and recent results in non-equilibrium theories, Entropy, vol. 16, pp. 1756–1807, 2014.
  47. 47. G. Lebon, D. Jou, and J. Casas-Vázquez, Understanding non-equilibrium thermodynamics. Berlin: Springer, 2008.10.1007/978-3-540-74252-4
  48. 48. G. Lebon, D. Jou, J. Casas-Vázquez, and W. Muschik, Weakly nonlocal and nonlinear heat transport in rigid solids, Journal of Non-Equilibrium Thermodynamics, vol. 23, pp. 176–191, 1998.10.1515/jnet.1998.23.2.176
  49. 49. W. Dreyer and H. Struchtrup, Heat pulse experiments revisited, Continuum Mechanics and Thermodynamics, vol. 5, pp. 3–50, 1993.10.1007/BF01135371
  50. 50. C. Eckart, The thermodynamics of irreversible processes, I. The simple fluid, Physical Review, vol. 58, pp. 267–269, 1940.10.1103/PhysRev.58.267
  51. 51. C. Eckart, The thermodynamics of irreversible processes, II. Fluid mixtures, Physical Review, vol. 58, pp. 269–275, 1940.10.1103/PhysRev.58.269
  52. 52. C. Eckart, The thermodynamics of irreversible processes, III. Relativistic theory of the simple fluid, Physical Review, vol. 58, pp. 919–924, 1940.10.1103/PhysRev.58.919
  53. 53. C. Eckart, The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity, Physical Review, vol. 73, no. 4, pp. 373–382, 1948.10.1103/PhysRev.73.373
  54. 54. I. Müller, Zur paradoxon der Wärmeleitungstheorie, Zeitschrift für Physik, vol. 198, pp. 329–344, 1967.10.1007/BF01326412
  55. 55. S. Machlup and L. Onsager, Fluctuations and irreversible processes. II. Systems with kinetic energy, Physical Review, vol. 91, no. 6, pp. 1512–1515, 1953.
  56. 56. I. Gyarmati, The wave approach of thermodynamics and some problems of non-linear theories, Journal of Non-Equilibrium Thermodynamics, vol. 2, pp. 233–260, 1977.10.1515/jnet.1977.2.4.233
  57. 57. J. Verhás, Termodinamikaés reológia. Budapest: Műszaki Könyvkiadó, 1985.
  58. 58. J. Verhás, Thermodynamics and Rheology. Budapest: Akadémiai Kiadó and Kluwer Academic Publisher, 1997.
  59. 60. J. Verhás, On the entropy current, Journal of Non-Equilibrium Thermodynamics, vol. 8, pp. 201–206, 1983.10.1515/jnet.1983.8.3.201
  60. 61. V. A. Cimmelli and P. Ván, The effects of nonlocality on the evolution of higher order fluxes in non-equilibrium thermodynamics, Journal of Mathematical Physics, vol. 46, no. 11, pp. 12901–15, 2005.
  61. 62. V. Ciancio, V. A. Cimmelli, and P. Ván, On the evolution of higher order fluxes in non-equilibrium thermodynamics, Mathematical and Computer Modelling, vol. 45, pp. 126–136, 2007.10.1016/j.mcm.2006.04.009
  62. 63. B. Nyíri, On the entropy current, Journal of Non-Equilibrium Thermodynamics, vol. 16, pp. 179–186, 1991.10.1515/jnet.1991.16.2.179
  63. 64. P. Ván, Weakly nonlocal irreversible thermodynamics – the Guyer-Krumhansl and the Cahn-Hilliard equations, Physics Letters A, vol. 290, no. 1-2, pp. 88–92, 2001.10.1016/S0375-9601(01)00657-0
  64. 65. R. Kovács and P. Ván, Generalized heat conduction in heat pulse experiments, International Journal of Heat and Mass Transfer, vol. 83, pp. 613–620, 2015.10.1016/j.ijheatmasstransfer.2014.12.045
  65. 66. S. Forest and M. Amestoy, Hypertemperature in thermoelastic solids, Comptes Rendus Mecanique, vol. 336, pp. 347–353, 2008.10.1016/j.crme.2008.01.007
  66. 67. Z.-Y. Guo and Q.-W. Hou, Thermal wave based on the thermomass model, Journal of Heat Transfer, vol. 132, no. 7, p. 072403, 2010.
  67. 68. V. A. Cimmelli, A. Sellitto, and D. Jou, Nonlinear evolution and stability of the heat flow in nanosystems: Beyond linear phonon hydrodynamics, Physical Review B, vol. 82, no. 184302, 2010.
  68. 69. P. Ván and T. Fülöp, Universality in heat conduction theory: weakly nonlocal thermodynamics, Annalen der Physik, vol. 524, no. 8, pp. 470–478, 2012.10.1002/andp.201200042
  69. 70. S. J. Rogers, Transport of heat and approach to second sound in some isotopically pure alkali-halide crystals, Physical Review B, vol. 3, no. 4, p. 1440, 1971.10.1103/PhysRevB.3.1440
  70. 71. A. Yanbao Ma., transient ballistic–diffusive heat conduction model for heat pulse propagation in nonmetallic crystals, International Journal of Heat and Mass Transfer, vol. 66, pp. 592–602, 2013.10.1016/j.ijheatmasstransfer.2013.06.069
  71. 72. A. Yanbao Ma., Hybrid phonon gas model for transient ballistic-diffusive heat transport, Journal of Heat Transfer, vol. 135, no. 4, p. 044501, 2013.
  72. 73. L. I. Mandelstam and M. A. Leontovich, On sound dissipation theory in fluids, JETP, vol. 7, no. 3, pp. 438–448, 1937.
  73. 74. L. D. Landau and E. M. Lifshitz, Fluid mechanics. London: Pergamon Press, 1959.
  74. 75. D. Y. Tzou, The generalized lagging response in small-scale and high-rate heating, J. Heat Mass Transfer, vol. 38, no. 17, pp. 3231–3240, 1995.
  75. 76. T. J. Bright and Z. M. Zhang, Common misperceptions of the hyperbolic heat equation, Journal of Thermophysics and Heat Transfer, vol. 23, no. 3, pp. 601–607, 2009.10.2514/1.39301
  76. 77. A. E. Green and P. M. Naghdi, A re-examination of the basic postulates of thermomechanics, in Proceedings of the Royal Society: Mathematical and Physical Sciences, pp. 171–194, 1991.10.1098/rspa.1991.0012
  77. 78. S. Bargmann and P. Steinmann, Finite element approaches to non-classical heat conduction in solids, Computer Modeling in Engineering Sciences, vol. 9, no. 2, pp. 133–150, 2005.
  78. 79. S. Bargmann and P. Steinmann, Classical results for a non-classical theory: remarks on thermodynamic relations in Green–Naghdi thermohyperelasticity, Continuum Mechanics and Thermodynamics, vol. 19, pp. 59–66, 2007.10.1007/s00161-007-0045-x
  79. 80. S. Bargmann and P. Steinmann, Modeling and simulation of first and second sound in solids, International Journal of Solids and Structures, vol. 45, pp. 6067–6073, 2008.
  80. 81. S. Bargmann and A. Favata, Continuum mechanical modeling of laser-pulsed heating in polycrystals: A multi-physics problem of coupling diffusion, mechanics, and thermal waves, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol. 94, no. 6, pp. 487–498, 2014.10.1002/zamm.201300116
  81. 82. V. A. Cimmelli and W. Kosinski, Nonequilibrium semi-empirical temperature in materials with thermal relaxation, Archives of Mechanics, vol. 43, no. 6, pp. 753–767, 1991.
  82. 83. V. A. Cimmelli, W. Kosiński, and K. Saxton, Modified Fourier law – comparison of two approaches, Archive of Mechanics, vol. 44, no. 4, pp. 409–415, 1992.
  83. 84. K. Frischmuth and V. A. Cimmelli, Coupling in thermo-mechanical wave propagation in NaF at low temperature, Archives of Mechanics, vol. 50, pp. 703–714, 1998.
  84. 85. B. D. Coleman and D. Newman, Implications of a nonlinearity in the theory of second sound in solids, Physical Review B, vol. 37, no. 4, p. 1492, 1988.10.1103/PhysRevB.37.14929944666
  85. 86. I.-S. Liu and I. Müller, On the thermodynamics and thermostatics of fluids in electromagnetic fields, Archive for Rational Mechanics and Analysis, vol. 46, no. 2, pp. 149–176, 1972.10.1007/BF00250689
  86. 87. W. Muschik, Aspects of Non-Equilibrium Thermodynamics. Singapore: World Scientific, 1990.10.1142/0991
  87. 88. S. I. Serdyukov, A new version of extended irreversible thermodynamics and dual-phase-lag model in heat transfer, Physics Letters A, vol. 281, pp. 16–20, 2001.10.1016/S0375-9601(01)00074-3
  88. 89. S. I. Serdyukov, On the definitions of entropy and temperature in the extended thermodynamics of irreversible processes, C. R. Physique, vol. 8, pp. 93–100, 2007.10.1016/j.crhy.2006.12.010
  89. 90. G. Chen, Ballistic-diffusive heat-conduction equations, Physical Review Letters, vol. 86, no. 11, p. 22974, 2001.
  90. 91. G. Chen, Ballistic-diffusive equations for transient heat conduction from nano to macroscales, ASME Journal of Heat Transfer, vol. 124, no. 2, pp. 320–328, 2002.10.1115/1.1447938
  91. 92. E. Zanchini, Hyperbolic-heat-conduction theories and nondecreasing entropy, Physical Review B, vol. 60, no. 2, p. 991, 1999.10.1103/PhysRevB.60.991
  92. 93. K. Zhukovsky, Solution of some types of differential equations: Operational calculus and inverse differential operators, The Scientific World Journal, vol. 2014, no. 4548, p. 65, 2014.
  93. 94. D. Y. Tzou, Macro- to microscale heat transfer (The lagging behaviour), Taylor and Francis, vol. 2, 2014.
  94. 95. M. Fabrizio and B. Lazzari, Stability and second law of thermodynamics in dual-phase-lag heat conduction, International Journal of Heat and Mass Transfer, vol. 74, pp. 484–489, 2014.10.1016/j.ijheatmasstransfer.2014.02.027
  95. 96. S. A. Rukolaine, Unphysical effects of the dual-phase-lag model of heat conduction, International Journal of Heat and Mass Transfer, vol. 78, pp. 58–63, 2014.10.1016/j.ijheatmasstransfer.2014.06.066
  96. 97. W. Muschik, Why so many ”schools” of thermodynamics?, Atti dell’Accademia Peloritana dei Pericolanti, Classe di Scienze Fisiche, Matematiche e Naturali, Suppl. I, vol. 86, p. C1S0801002, 2008.
Language: English
Page range: 150 - 166
Submitted on: Jan 17, 2015
Accepted on: Mar 30, 2015
Published on: May 20, 2016
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 Péter Ván, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.