Have a personal or library account? Click to login
Effective thermal conductivity of superfluid helium: laminar, turbulent and ballistic regimes Cover

Effective thermal conductivity of superfluid helium: laminar, turbulent and ballistic regimes

Open Access
|May 2016

References

  1. 1. V. Arp, Heat transfer to superfluid and supercritical helium, Journal of Applied Physics, vol. 40, p. 2010, 1969.10.1063/1.1657900
  2. 2. K. Mendelsohn, Liquid helium, in Encyclopedia of Physics, vol. XV, Berlin: Springer, 1956.10.1007/978-3-642-45838-5_5
  3. 3. S. W. Van Sciver, Helium Cryogenics. Berlin: Springer, second ed., 2012.10.1007/978-1-4419-9979-5
  4. 4. B. Bertman and T. A. Kitchens, Heat transport in superfluid filled capillaries, Cryogenics, vol. 8, pp. 36–41, 1968.10.1016/S0011-2275(68)80051-7
  5. 5. D. Benin and H. J. Maris, Phonon heat transport and Knudsen”s minimum in liquid helium at low temperatures, Physical Review B, vol. 18, pp. 3112–3125, 1978.
  6. 6. D. S. Greywall, Thermal-conductivity measurements in liquid 4He below 0.7k, Physical Review B, vol. 23, pp. 2152–2168, 1981.
  7. 7. H. J. Maris, Dissipative coefficients of superfluid helium, Physical Review A, vol. 7, pp. 2074–2081, 1973.
  8. 8. L. D. Landau, Theory of the superfluidity of helium II, Physical Review, vol. 60, no. 4, p. 356, 1941.10.1103/PhysRev.60.356
  9. 9. M. Sciacca, A. Sellitto, and D. Jou, Transition to ballistic regime for heat transport in helium II, Physics Letters A, vol. 378, pp. 2471–2477, 2014.
  10. 10. M. Sciacca, D. Jou, and M. S. Mongioví, Effective thermal conductivity of helium ii: from landau to gorter–mellink regimes, Zeitschrift für angewandte Mathematik und Physik, pp. 1–17, 2013.
  11. 11. P. Critchlow and R. Hemstreet, Heat transport in superfluid helium in wide tubes, Journal of Applied Physics, vol. 40, p. 2675, 1969.10.1063/1.1658056
  12. 12. L. D. Landau and E. M. Lishitz, Mechanics of fluids. Oxford: Pergamon, 1985.
  13. 13. R. J. Donnelly, Quantized vortices in helium II. Cambridge, UK: Cambridge University Press, 1991.
  14. 14. C. F. Barenghi, R. J. Donnelly, and W. F. Vinen, Quantized Vortex Dynamics and Superfluid Turbulence. Berlin: Springer, 2001.10.1007/3-540-45542-6
  15. 15. M. Tsubota, M. Kobayashi, and H. Takeuchi, Quantum hydrodynamics, Physics Report, vol. 522, pp. 191–238, 2013.10.1016/j.physrep.2012.09.007
  16. 16. S. K. Nemirovskii, Quantum turbulence: Theoretical and numerical problems, Physics Reports, vol. 524, pp. 85–202, 2013.10.1016/j.physrep.2012.10.005
  17. 17. D. R. Ladner and J. T. Tough, Temperature and velocity dependence of superfluid turbulence, Physical Review B, vol. 20, pp. 2690–2702, 1979.
  18. 18. A. Sato and et al., Temperature dependence of the Gorter-Mellink exponent measured in a channel containing He II, in ADVANCES IN CRYOGENIC ENGINEERING: Transactions of the Cryogenic Engineering Conference-CEC, vol. 823, pp. 387–392, AIP Publishing, 2006.10.1063/1.2202439
  19. 19. R. Whitworth, Experiments on the flow of heat in liquid helium below 0.7 degrees K, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 246, no. 1246, pp. 390–405, 1958.
  20. 20. S. Putterman, Superfluid hydrodynamics. Amsterdam: North-Holland Publishing Co., 1974.
  21. 21. S. Nemirovskii, V. Koren’kov, and V. Krupitskii, Heat flux through a phase interface in superfluid helium, Journal of Engineering Physics, vol. 47, no. 6, pp. 1413–1419, 1984.
  22. 22. D. Jou, J. Casas-Vázquez, and G. Lebon, Extended Irreversible Thermodynamics. Berlin: Springer-Verlag, fourth ed., 2010.10.1007/978-90-481-3074-0_2
  23. 23. I. Müller and T. Ruggeri, Rational Extended Thermodynamics. New York: Springer-Verlag, 1998.10.1007/978-1-4612-2210-1
  24. 24. M. S. Mongioví, Extended irreversible thermodynamics of liquid helium II, Physical Review B, vol. 48, pp. 6276–6283, 1993.
  25. 25. D. Jou, J. Casas-Vázquez, and M. Criado-Sancho, Thermodynamics of Fluids Under Flow. Berlin: Springer, second ed., 2011.10.1007/978-94-007-0199-1
  26. 26. D. Jou, G. Lebon, and M. S. Mongiovì, Second sound, superfluid turbulence, and intermittent effects in liquid helium II, Physical Review B, vol. 66, p. 224509 (9 pages), 2002.
  27. 27. D. Jou and M. Mongiovì, Description and evolution of anisotropy in superfluid vortex tangles with counterflow and rotation, Physical Review B, vol. 74, p. 054509 (11 pages), 2006.
  28. 28. H. Bruus, Theoretical microfluidics. Oxford: Oxford University Press, 2007.
  29. 29. D. Jou, G. Lebon, and M. Criado-Sancho, Variational principles for thermal transport in nanosystems with heat slip flow, Physical Review E, vol. 82, no. 3, p. 031128, 2010.
  30. 30. G. Lebon and P. Dauby, Heat transport in dielectric crystals at low temperature: A variational formulation based on extended irreversible thermodynamics, Physical Review A, vol. 42, p. 4710, 1990.10.1103/PhysRevA.42.4710
  31. 31. D. Jou and M. Sciacca, Quantum Reynolds number for superfluid counterflow turbulence, in Bollettino di Matematica Pura e Applicata (M. S. Mongioví, M. Sciacca, and S. Triolo, eds.), vol. VI, pp. 95–103, Aracne editrice, 2013.
  32. 32. J. Tough, Superfluid turbulence, in Progress of Low Temperature Physics (D. Brewer, ed.), vol. VIII, pp. 133–219, North Holland, 1982.10.1016/S0079-6417(08)60006-2
  33. 33. M. S. Mongiovì and D. Jou, Generalization of Vinen’s equation including transition to superfluid turbulence, Journal of Physics: Condensed Matter, vol. 17, pp. 4423–4440, 2005.
  34. 34. K. P. Martin and J. T. Tough, Evolution of superfluid turbulence in thermal counterflow, Physical Review B, vol. 27, pp. 2788–2799, 1983.
  35. 35. E. Yarmchuk and W. I. Glaberson, Thermorotation Effects in Superfluid Helium, Physical Review Letters, vol. 41, no. 8, pp. 564–568, 1978.10.1103/PhysRevLett.41.564
  36. 36. L. Galantucci, C.F. Barenghi, M. Sciacca, M. Quadrio, and P. Luchini, Turbulent Superfluid Profiles in a Counterflow Channel, Journal of Low Temperature Physics, vol. 162, pp. 354–360, 2011.10.1007/s10909-010-0266-4
  37. 37. L. Galantucci and M. Sciacca, Non-classical velocity statistics in counterflow quantum turbulence, Acta Applicandae Mathematicae, vol. 132, no. 1, pp. 273–281, 2014.10.1007/s10440-014-9902-3
  38. 38. L. D. Landau, Theory of the Superfluidity of Helium II, Journal of Physics, vol. 5, pp. 71–90, 1941.
  39. 39. L. Tisza, Transport phenomena in Helium II, Nature, vol. 141, p. 913, 1938.10.1038/141913a0
  40. 40. I. K. I.L. Bekarevich, Phenomenological derivation of the equation of vortex motion in he ii, Soviet Physics JETP, vol. 13, pp. 643–646, 1961.
  41. 41. H. Hall and W. Vinen, The rotation of liquid helium ii. ii. the theory of mutual friction in uniformly rotating helium II, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 238, no. 1213, pp. 215–234, 1956.
Language: English
Page range: 111 - 129
Submitted on: Dec 31, 2014
Accepted on: Aug 4, 2015
Published on: May 20, 2016
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 Michele Sciacca, Luca Galantucci, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.