Have a personal or library account? Click to login
Optimization of supercooling effect in nanoscaled thermoelectric layers Cover

Optimization of supercooling effect in nanoscaled thermoelectric layers

Open Access
|May 2016

References

  1. 1. G. J. Snyder, J. P. Fleurial, T. Caillat, R. Yang, and G. Chen, Supercooling of peltier cooler using a current pulse, Journal of Applied Physics, vol. 92, no. 1564, 2002.10.1063/1.1489713
  2. 2. M. P. Gupta, M. Sayer, S. Mukhopadhyay, and S. Kumar, On-chip peltier cooling using current pulse, in 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), pp. 1–7, 2010.10.1109/ITHERM.2010.5501384
  3. 3. M. P. Gupta, M.-H. Sayer, S. Mukhopadhyay, and S. Kumar, Ultrathin thermoelectric devices for on-chip peltier cooling, in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 1, pp. 1395–1405, 2011.
  4. 4. B. Alexandrov, O. S. S. Kumar, and S. Mukhopadhyay, Prospects of active cooling with integrated super-lattice based thin-film thermoelectric devices for mitigating hotspot challenges in microprocessors, in 17th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 633–638, 2012.10.1109/ASPDAC.2012.6165033
  5. 5. M. Manno, P. Wang, and A. Bar-Cohen, Anticipatory thermoelectric cooling of a transient germanium hotspot, in ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, vol. 2, p. V002T08A038, 2013.10.1115/IPACK2013-73186
  6. 6. I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, D. Koester, R. Alley, and R. Venkatasubramanian, On-chip cooling by superlattice-based thin-film thermoelectrics, Nature Nanotechnology, vol. 4, pp. 235–238, 2009.10.1038/nnano.2008.41719350033
  7. 7. T. Thonhauser, G. D. Mahan, L. Zikatanov, and J. Roe, Improved supercooling in transient thermoelectrics, Applied Physics Letters, vol. 85, no. 15, pp. 3247–3249, 2004.
  8. 8. J. N. Mao, H. X. Chen, H. Jia, and X. L. Qian, The transient behaviour of peltier junctions pulsed with supercooling, Journal of Applied Physics, vol. 112, no. 014514, 2012.
  9. 9. M. Ma and J. Yu, A numerical study on the temperature overshoot characteristic of a realistic thermoelectric module under current pulse operation, International Journal of Heat and Mass Transfer, vol. 72, pp. 234–241, 2014.10.1016/j.ijheatmasstransfer.2014.01.017
  10. 10. B. Vermeersch, J.-H. Bahk, J. Christofferson, and A. Shakouri, Thermoreflectance imaging of sub 100ns pulsed cooling in high-speed thermo-electric microcoolers, Journal of Applied Physics, vol. 113, no. 104502, 2013.
  11. 11. F. X. Alvarez and D. Jou, Memory and nonlocal effects in heat transport: From diffusive to ballistic regimes, Applied Physics Letters, vol. 90, pp. 1–3, 2007.10.1063/1.2645110
  12. 12. A. Sellitto, V. Cimmelli, and D. Jou, Thermoelectric effects and size dependency of the figure-of-merit in cylindrical nanowires, International Journal of Heat and Mass Transfer, vol. 57, pp. 109–116, 2013.10.1016/j.ijheatmasstransfer.2012.10.010
  13. 13. F. Márkus and K. Gambár, Heat propagation dynamics in thin silicon layers, International Journal of Heat and Mass Transfer, vol. 56, pp. 495–500, 2013.10.1016/j.ijheatmasstransfer.2012.09.023
  14. 14. A. Sellitto, V. Cimmelli, and D. Jou, Analysis of three nonlinear effects in a continuum approach to heat transport in nanosystems, Physica D, vol. 241, pp. 1344–1350, 2012.
  15. 15. D. Jou, J. Casas-Vazquez, and G. Lebon, Extended Irreversible Thermodynamics. Springer, 2010.10.1007/978-90-481-3074-0
  16. 16. A. Sellitto and V. Cimmelli, A continuum approach to thermomass theory, Journal of Heat Transfer, vol. 134, no. 112402, 2012.
  17. 17. F. Vázquez and A. Figueroa, Pulsed cooling in nanoscaled thermoelectric layers: nonlocal and memory effects, Submitted, 2014.
  18. 18. A. Figueroa and F. Vázquez, Optimal performance and entropy generation transition from micro to nanoscaled thermoelectric layers, International Journal of Heat and Mass Transfer, vol. 71, pp. 724–731, 2014.10.1016/j.ijheatmasstransfer.2013.12.080
  19. 19. W. G. Ma, H. D. Wang, X. Zhang, and W. Wang, Experiment study of the size effects on electron-phonon relaxation and electrical resistivity of polycrystalline thin gold films, Journal of Applied Physics, vol. 108, no. 064308, 2010.
  20. 20. A. Figueroa and F. Vázquez, Spectral and finite difference solutions of the hyperbolic heat transport equation for thermoelectric thin films, Applied Mathematics, vol. 4, pp. 22–27, 2013.10.4236/am.2013.410A3004
  21. 21. S. Zhao and M. J. Yedlin, A new iterative chebyshev spectral method for solving the elliptic equation ∇ · (σ∇u) = f, Journal of Computational Physics, vol. 113, pp. 251–223, 1994.10.1006/jcph.1994.1131
  22. 22. R. Peyret, Spectral Methods for Incompressible Viscous Flow. Springer-Verlag, 2002.10.1007/978-1-4757-6557-1
  23. 23. Q. Zhou, Z. Bian, and A. Shakouri, Pulsed cooling of inhomogeneous thermoelectric materials, Journal of Physics D: Applied Physics, vol. 40, no. 064308, pp. 4376–4381, 2007.
Language: English
Page range: 98 - 110
Submitted on: Dec 30, 2014
Accepted on: Jun 14, 2015
Published on: May 20, 2016
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 Iván Rivera, Aldo Figueroa, Federico Vázquez, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.