Have a personal or library account? Click to login
Role of thermodynamics in extensions of mesoscopic dynamical theories Cover

Role of thermodynamics in extensions of mesoscopic dynamical theories

By: Miroslav Grmela  
Open Access
|May 2016

References

  1. 1. L. Euler, Principes généraux du mouvement des fluides, Académie Royale des Sciences et des Belles-Lettres de Berlin, Mémoires., vol. 11, 1755 (English translation available in Physica D 237, 1825-1839, 2008).
  2. 2. C. Truesdell, Rational thermodynamics. New York, NY, USA: Springer, 2nd ed., 1984.10.1007/978-1-4612-5206-1
  3. 3. R. B. Bird, O. Hassager, R. C. Armstrong, and C. F. Curtiss, Dynamics of Polymeric Fluids, vol. 1. New York, NY, USA: Wiley, 1987.
  4. 4. R. B. Bird, O. Hassager, R. C. Armstrong, and C. F. Curtiss, Dynamics of Polymeric Fluids, vol. 2. New York, NY, USA: Wiley, 1987.
  5. 5. C. Cattaneo, Sulla conduzione del calore, Atti del Seminario Matematico e Fisico della Universita di Modena, vol. 3, pp. 83–101, 1948.
  6. 6. R. Peierls, Zur kinetischen Theorie der Wärmeleitung in Kristallen, Ann. Phys., vol. 395, pp. 1055–1101, 1929.
  7. 7. J. W. Gibbs, Collected Works. New York, NY, USA: Longmans Green and Co., 1984.
  8. 8. E. T. Jaynes, Foundations of probability theory and statistical mechanics, in Delaware Seminar in the Foundation of Physics, New York, NY, USA: Springer, 1967.10.1007/978-3-642-86102-4_6
  9. 9. R. Hermann, Geometry, Physics and Systems. New York, NY, USA: Marcel Dekker, 1984.
  10. 10. V. I. Arnold, Mathematical methods of classical mechanics. New York, NY, USA: Springer, 1989.10.1007/978-1-4757-2063-1
  11. 11. V. I. Arnold, Sur la géometrie différentielle des groupes de lie de dimension infini et ses applications dans l’hydrodynamique des fluides parfaits, ann, Inst. Fourier, vol. 16, p. 319, 1966.10.5802/aif.233
  12. 12. M. Grmela, Thermodynamical lift of the nonlinear onsager-casimir vector field, in Proceedings of the Workshop on Hamiltonian Systems, Transformation Groups and Spectral Transform Methods (J. E. Harnad, J. Marsden, ed.), pp. 199–207, CRM, Univ. de Montreal, 1990.
  13. 13. M. Grmela, Multiscale equilibrium and nonequilibrium thermodynamics in chemical engineering, Advances in Chemical Engineering, vol. 39, pp. 76–128, 2010.10.1016/S0065-2377(10)39002-8
  14. 14. M. Grmela, Contact geometry of mesoscopic thermodynamics and dynamics, Entropy, vol. 16, pp. 1652–1686, 2014.
  15. 15. I. E. Dzyaloshinskii and G. E. Volovick, Poisson brackets in condense matter physics, Ann. Phys., vol. 125, pp. 67–97, 1980.10.1016/0003-4916(80)90119-0
  16. 16. M. Grmela, Particle and bracket formulations of kinetic equations, Contemporary Math., vol. 28, pp. 125–132, 1984.10.1090/conm/028/751978
  17. 17. A. N. Kaufman, Dissipative hamiltonian systems: A unifying principle, Phys. Letters A, vol. 100, p. 419, 1984.10.1016/0375-9601(84)90634-0
  18. 18. P. J. Morrison, Bracket formulation for irreversible classical fields, Phys. Letters A, vol. 100, p. 423, 1984.10.1016/0375-9601(84)90635-2
  19. 19. M. M. Grmela and H. Öttinger, Dynamics and thermodynamics of complex fluids: General formulation, Phys.Rev.E, vol. 56, pp. 6620–6633, 1997.
  20. 20. H. C. Öttinger and M. Grmela, Dynamics and thermodynamics of complex fluids: Illustration of the general formalism, Phys.Rev.E, vol. 56, pp. 6633–6650, 1997.
  21. 21. M. Grmela, Fluctuations in extended mass-action-law dynamics, Physica D, vol. 241, pp. 976–986, 2012.10.1016/j.physd.2012.02.008
  22. 22. A. Clebsch, Über die integration der hydrodynamische gleichungen, J. Reine Angew. Math, vol. 56, pp. 1–10, 1895.
  23. 23. M. Grmela, Role of thermodynamics in multiscale physics, Computers and Math. Appl., vol. 65, pp. 1457–1470, 2013.
  24. 24. D. Jou, J. Casas-Vàzquez, and G. Lebon, Extended Irreversible Thermodynamics. Berlin: Springer, 4th ed., 2010.10.1007/978-90-481-3074-0
  25. 25. M. Grmela, A. Ammar, and F. C. G. Maîtrejean, A mesoscopic rheological model of moderately concentrated colloids, J. Non-Newtonian Fluid Mech., vol. 212, pp. 1–12, 2014.10.1016/j.jnnfm.2014.07.005
  26. 26. R. J. DiPerna and P. L. Lions, Global solutions of Boltzmann’s equation and the entropy inequality, Arch. Rational Mech. Anal., vol. 114, pp. 47–55, 1991.10.1007/BF00375684
  27. 27. S. K. Godunov, Symmetric form of the magnetohydrodynamic equation, Chislennye Metody Mekhaniki Sploshnoi Sredy, vol. 3, no. 1, pp. 26–34, 1972.
  28. 28. K. O. Friedrichs, Conservation equations and the laws of motion in classical physics, Commun. Pure Appl. Math., vol. 31, pp. 123 – 131, 1978.10.1002/cpa.3160310107
  29. 29. B. D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Ration. Mech. Anal., vol. 13, pp. 167–178, 1963.10.1007/BF01262690
  30. 30. H. Grad, Principles of Kinetic Theory of Gases, vol. 12. Springer-Verlag: Encyclopedia of Physics, 1958.10.1007/978-3-642-45892-7_3
  31. 31. R. T. Müller, I., Rational Extended Thermodynamics. New York, NY, USA: Springer, 1998.10.1007/978-1-4612-2210-1
  32. 32. T. Ruggeri, The entropy principle: from continuum mechanics to hyperbolic systems of balance laws, Bollettino dell’Unione Matematica Italiana,, vol. Serie 8, Vol. 8-B, no. 1, pp. 1–20, 2005.
  33. 33. V. A. Cimmelli, D. Jou, T. Ruggeri, and P. Ván, Entropy principle and recent results in non-equilibrium theories, Entropy, vol. 16, pp. 1756–1807, 2014.
  34. 34. H. Struchtrup, Macroscopic transport equations for rarefied gas flows. Berlin, Germany: Springer, 2005.10.1007/3-540-32386-4
  35. 35. G. M. Kremer, An introduction to the Boltzmann equation and transport processes in gases. Berlin, Germany: Springer, 2010.10.1007/978-3-642-11696-4
  36. 36. P. Ván, A. Berezovski, and J. Engelbrecht, Internal variables and dynamic degrees of freedom, J. Non-Equilib. Thermod., vol. 33, pp. 235–254, 2008.10.1515/JNETDY.2008.010
  37. 37. A. Berezovski, J. Engelbrecht, and M. A. Maugin, Generalized thermo-mechanics with dual internal variables, Archives Appl. Mech., vol. 81, pp. 229–240, 2011.10.1007/s00419-010-0412-0
  38. 38. J. Casas-Vázquez and D. Jou, Temperature in non-equilibrium states: A review of open problems and current proposals, Rep. Prog. Phys., vol. 66, pp. 1937–2023, 2003.
  39. 39. M. Grmela, Weakly nonlocal hydrodynamics, Phys. Rev. E, vol. 47, p. 351, 1993.10.1103/PhysRevE.47.351
  40. 40. M. Grmela, Extensions of classical hydrodynamics, J. Stat. Phys., vol. 132, pp. 581–602, 2008.10.1007/s10955-008-9558-3
  41. 41. V. A. Cimmelli, An extension of liu procedure in weakly nonlocal thermodynamics, J. Mat. Phys., vol. 48, p. 113510, 2007.
  42. 42. P. Ván, Weakly nonlocal irreversible thermodynamics, Ann. Physik, vol. 12, pp. 142–169, 2003.10.1002/andp.200310002
  43. 43. E. Johannessen and D. Bedeaux, The nonequilibrium van der waals square gradient model. (ii) local equilibrium of the Gibbs surface, Physica A, vol. 330, pp. 354–372, 2003.10.1016/j.physa.2003.09.054
  44. 44. J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. interfacial free energy, J. Chem. Phys., vol. 28, p. 258, 1958.10.1063/1.1744102
  45. 45. M. Grmela, G. Lebon, and C. Dubois, Multiscale thermodynamics and mechanics of heat, Phys. Rev. E, vol. 83, 2011.10.1103/PhysRevE.83.061134
  46. 46. T. Ruggeri, Can constitutive relations be represented by non-local equations?, Quart. Appl. Math., vol. 70, pp. 597–611, 2012.10.1090/S0033-569X-2012-01314-3
  47. 47. M. Grmela and J. Teichmann, Lagrangian formulation of the Maxwell-Cattaneo hydrodynamics, Int. J. Engng Sci., vol. 21, pp. 297–313, 1983.10.1016/0020-7225(83)90115-5
  48. 48. T. Arima, S. Taniguchi, T. Ruggeri, and M. Sugiyama, Extended thermodynamics of dense gases, Cont. Mech. Thermodyn., vol. 24, pp. 271–292, 2012.10.1007/s00161-011-0213-x
  49. 49. Z. Y. Guo and G. W. Hou, Thermal wawe based on thermomass model, Journal of Heat Transfer, vol. 132, p. 072403, 2010.
  50. 50. V. A. Cimmelli and W. Kosinski, Nonequilibrium semiempirical temperature in materials with thermal relaxation, Arch. Mech., vol. 43, p. 753, 1991.
  51. 51. B. L. Holian and P. M. Mareschal, Heat-flow equation motivated by the ideal-gas shock wave, Phys. Rev. E, vol. 82, p. 026707, 2010.
  52. 52. L. Onsager and S. Machlup, Fluctuations and irreversible processes, Phys Rev., vol. 91, pp. 1505–1512, 1953.
Language: English
Page range: 56 - 80
Submitted on: Dec 12, 2014
Accepted on: May 7, 2015
Published on: May 20, 2016
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 Miroslav Grmela, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.