Have a personal or library account? Click to login
Heat-pulse propagation along nonequilibrium nanowires in thermomass theory Cover

Heat-pulse propagation along nonequilibrium nanowires in thermomass theory

Open Access
|May 2016

References

  1. 1. T. L. Hill, Thermodynamics of Small Systems. New York: Dover, 1994.
  2. 2. D. Y. Tzou, Macro to micro-scale heat transfer. The lagging behaviour. New York: Taylor and Francis, 1997.
  3. 3. Z. M. Zhang, Nano/Microscale heat transfer. New York: McGraw-Hill, 2007.
  4. 4. D. Jou, J. Casas-Vázquez, and G. Lebon, Extended Irreversible Thermodynamics. Berlin: Springer, fourth revised ed., 2010.10.1007/978-90-481-3074-0_2
  5. 5. S. Volz (ed.), Thermal Nanosystems and Nanomaterials (Topics in Applied Physics). Berlin: Springer, 2010.10.1007/978-3-642-04258-4
  6. 6. R. A. Guyer and J. A. Krumhansl, “Solution of the linearized phonon Boltzmann equation,” Phys. Rev., vol. 148, pp. 766–778, 1966.10.1103/PhysRev.148.766
  7. 7. G. Chen, “Ballistic-diffusive heat-conduction equations,” Phys. Rev. Lett., vol. 86, pp. 2297–2300, 2001.
  8. 8. M. Grmela, G. Lebon, P. C. Dauby, and M. Bousmina, “Ballistic-diffusive heat conduction at nanoscale: GENERIC approach,” Phys. Lett. A, vol. 339, pp. 237–245, 2005.10.1016/j.physleta.2005.03.048
  9. 9. V. A. Cimmelli, A. Sellitto, and D. Jou, “Nonlocal effects and second sound in a nonequilibrium steady state,” Phys. Rev. B, vol. 79, p. 014303 (13 pages), 2009.
  10. 10. D. Y. Tzou and Z.-Y. Guo, “Nonlocal behavior in thermal lagging,” Int. J. Thermal Sci., vol. 49, pp. 1133–1137, 2010.
  11. 11. D. Y. Tzou, “Nonlocal behavior in phonon transport,” Int. J. Heat Mass Transfer, vol. 54, pp. 475–481, 2011.10.1016/j.ijheatmasstransfer.2010.09.022
  12. 12. G. Lebon, H. Machrafi, M. Grmela, and C. Dubois, “An extended thermodynamic model of transient heat conduction at sub-continuum scales,” Proc.R.Soc.A, vol. 467, pp. 3241–3256, 2011.
  13. 13. P. Ván and T. Fülöp, “Universality in heat conduction theory: weakly nonlocal thermodynamics,” Ann. Phys., vol. 524, pp. 470–478, 2012.10.1002/andp.201200042
  14. 14. G. Lebon, “Heat conduction at micro and nanoscales: A review through the prism of Extended Irreversible Thermodynamics,” J. Non-Equilib. Thermodyn., vol. 39, pp. 35–59, 2014.10.1515/jnetdy-2013-0029
  15. 15. V. A. Cimmelli, D. Jou, T. Ruggeri, and P. Ván, “Entropy Principle and Recent Results in Non-Equilibrium Theories,” Entropy, vol. 16, pp. 1756–1807, 2014.
  16. 16. Y. Dong, B.-Y. Cao, and Z.-Y. Guo, “Generalized heat conduction laws based on thermomass theory and phonon hydrodynamics,” J. Appl. Phys., vol. 110, p. 063504 (6 pages), 2011.
  17. 17. M. Wang, N. Yang, and Z.-Y. Guo, “Non-Fourier heat conductions in nanomaterials,” J. Appl. Phys., vol. 110, p. 064310 (7 pages), 2011.
  18. 18. Y. Dong, B.-Y. Cao, and Z.-Y. Guo, “General expression for entropy production in transport processes based on the thermomass model,” Phys. Rev. E, vol. 85, p. 061107 (8 pages), 2012.
  19. 19. A. Sellitto and V. A. Cimmelli, “A continuum approach to thermomass theory,” J. Heat Trans. – T. ASME, vol. 134, p. 112402 (8 pages), 2012.
  20. 20. B.-Y. Cao and Z.-Y. Guo, “Equation of motion of a phonon gas and non-Fourier heat conduction,” J. Appl. Phys., vol. 102, p. 053503 (6 pages), 2007.
  21. 21. Y. Dong, B.-Y. Cao, and Z.-Y. Guo, “Size dependent thermal conductivity of Si nanosystems based on phonon gas dynamics,” Physica E, vol. 56, pp. 256–262, 2014.10.1016/j.physe.2013.10.006
  22. 22. I. Müller and T. Ruggeri, Rational Extended Thermodynamics. Berlin: Springer-Verlag, 1998.10.1007/978-1-4612-2210-1
  23. 23. J. Wang and J.-S. Wang, “Carbon nanotube thermal transport: ballistic to diffusive,” Appl. Phys. Lett., vol. 88, p. 111909 (3 pages), 2006.
  24. 24. M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, and T. Shimizu, “Measuring the thermal conductivity of a single carbon nanotube,” Phys. Rev. Lett., vol. 95, p. 065502 (4 pages), 2005.
  25. 25. D. Jou and A. Sellitto, “Focusing of heat pulses along nonequilibrium nanowires,” Phys. Lett. A, vol. 374, pp. 313–318, 2009.10.1016/j.physleta.2009.10.032
  26. 26. Z.-Y. Guo and Q.-W. Hou, “Thermal wave based on the thermomass model,” J. Heat Trans - T. ASME, vol. 132, p. 072403 (6 pages), 2010.
  27. 27. V. A. Cimmelli, “Different thermodynamic theories and different heat conduction laws,” J. Non-Equilib. Thermodyn., vol. 34, pp. 229–333, 2009.10.1515/JNETDY.2009.016
  28. 28. D. Jou, A. Sellitto, and F. X. Alvarez, “Heat waves and phonon-wall collisions in nanowires,” Proc.R.Soc.A, vol. 467, pp. 2520–2533, 2011.
  29. 29. A. Jeffrey and T. Taniuti, Nonlinear Wave Propagation. New York: Academic, 1964.
  30. 30. B. Straughan, Heat waves. Berlin: Springer, 2011.10.1007/978-1-4614-0493-4
  31. 31. M. T. Yin and M. L. Cohen, “Theory of lattice-dynamical properties of solids: Application to Si and Ge,” Phys. Rev. B, vol. 26, pp. 3259–3272, 1992.
  32. 32. V. A. Cimmelli and W. Kosiński, “Nonequilibrium semi-empirical temperature in materials with thermal relaxation,” Arch. Mech., vol. 43, pp. 753–767, 1991.
  33. 33. V. A. Cimmelli and K. Frischmuth, “Determination of material functions through second sound measurements in a hyperbolic heat conduction theory,” Mathl. Comput. Modelling, vol. 24, pp. 19–28, 1996.10.1016/S0895-7177(96)00175-6
  34. 34. C. D. Levermore and G. C. Pomraning, “A flux-limited diffusion theory,” Astrophys. J., vol. 248, pp. 321–334, 1981.10.1086/159157
  35. 35. A. Sellitto and V. A. Cimmelli, “Flux Limiters in Radial Heat Transport in Silicon Nanolyers,” J. Heat Trans. – T. ASME, vol. 136, p. 071301 (6 pages), 2014.
Language: English
Page range: 39 - 55
Submitted on: Dec 16, 2014
Accepted on: Mar 9, 2015
Published on: May 20, 2016
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 Antonio Sellitto, Patrizia Rogolino, Isabella Carlomagno, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.