References
- 1. T. L. Hill, Thermodynamics of Small Systems. New York: Dover, 1994.
- 2. D. Y. Tzou, Macro to micro-scale heat transfer. The lagging behaviour. New York: Taylor and Francis, 1997.
- 3. Z. M. Zhang, Nano/Microscale heat transfer. New York: McGraw-Hill, 2007.
- 4. D. Jou, J. Casas-Vázquez, and G. Lebon, Extended Irreversible Thermodynamics. Berlin: Springer, fourth revised ed., 2010.10.1007/978-90-481-3074-0_2
- 5. S. Volz (ed.), Thermal Nanosystems and Nanomaterials (Topics in Applied Physics). Berlin: Springer, 2010.10.1007/978-3-642-04258-4
- 6. R. A. Guyer and J. A. Krumhansl, “Solution of the linearized phonon Boltzmann equation,” Phys. Rev., vol. 148, pp. 766–778, 1966.10.1103/PhysRev.148.766
- 7. G. Chen, “Ballistic-diffusive heat-conduction equations,” Phys. Rev. Lett., vol. 86, pp. 2297–2300, 2001.
- 8. M. Grmela, G. Lebon, P. C. Dauby, and M. Bousmina, “Ballistic-diffusive heat conduction at nanoscale: GENERIC approach,” Phys. Lett. A, vol. 339, pp. 237–245, 2005.10.1016/j.physleta.2005.03.048
- 9. V. A. Cimmelli, A. Sellitto, and D. Jou, “Nonlocal effects and second sound in a nonequilibrium steady state,” Phys. Rev. B, vol. 79, p. 014303 (13 pages), 2009.
- 10. D. Y. Tzou and Z.-Y. Guo, “Nonlocal behavior in thermal lagging,” Int. J. Thermal Sci., vol. 49, pp. 1133–1137, 2010.
- 11. D. Y. Tzou, “Nonlocal behavior in phonon transport,” Int. J. Heat Mass Transfer, vol. 54, pp. 475–481, 2011.10.1016/j.ijheatmasstransfer.2010.09.022
- 12. G. Lebon, H. Machrafi, M. Grmela, and C. Dubois, “An extended thermodynamic model of transient heat conduction at sub-continuum scales,” Proc.R.Soc.A, vol. 467, pp. 3241–3256, 2011.
- 13. P. Ván and T. Fülöp, “Universality in heat conduction theory: weakly nonlocal thermodynamics,” Ann. Phys., vol. 524, pp. 470–478, 2012.10.1002/andp.201200042
- 14. G. Lebon, “Heat conduction at micro and nanoscales: A review through the prism of Extended Irreversible Thermodynamics,” J. Non-Equilib. Thermodyn., vol. 39, pp. 35–59, 2014.10.1515/jnetdy-2013-0029
- 15. V. A. Cimmelli, D. Jou, T. Ruggeri, and P. Ván, “Entropy Principle and Recent Results in Non-Equilibrium Theories,” Entropy, vol. 16, pp. 1756–1807, 2014.
- 16. Y. Dong, B.-Y. Cao, and Z.-Y. Guo, “Generalized heat conduction laws based on thermomass theory and phonon hydrodynamics,” J. Appl. Phys., vol. 110, p. 063504 (6 pages), 2011.
- 17. M. Wang, N. Yang, and Z.-Y. Guo, “Non-Fourier heat conductions in nanomaterials,” J. Appl. Phys., vol. 110, p. 064310 (7 pages), 2011.
- 18. Y. Dong, B.-Y. Cao, and Z.-Y. Guo, “General expression for entropy production in transport processes based on the thermomass model,” Phys. Rev. E, vol. 85, p. 061107 (8 pages), 2012.
- 19. A. Sellitto and V. A. Cimmelli, “A continuum approach to thermomass theory,” J. Heat Trans. – T. ASME, vol. 134, p. 112402 (8 pages), 2012.
- 20. B.-Y. Cao and Z.-Y. Guo, “Equation of motion of a phonon gas and non-Fourier heat conduction,” J. Appl. Phys., vol. 102, p. 053503 (6 pages), 2007.
- 21. Y. Dong, B.-Y. Cao, and Z.-Y. Guo, “Size dependent thermal conductivity of Si nanosystems based on phonon gas dynamics,” Physica E, vol. 56, pp. 256–262, 2014.10.1016/j.physe.2013.10.006
- 22. I. Müller and T. Ruggeri, Rational Extended Thermodynamics. Berlin: Springer-Verlag, 1998.10.1007/978-1-4612-2210-1
- 23. J. Wang and J.-S. Wang, “Carbon nanotube thermal transport: ballistic to diffusive,” Appl. Phys. Lett., vol. 88, p. 111909 (3 pages), 2006.
- 24. M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, and T. Shimizu, “Measuring the thermal conductivity of a single carbon nanotube,” Phys. Rev. Lett., vol. 95, p. 065502 (4 pages), 2005.
- 25. D. Jou and A. Sellitto, “Focusing of heat pulses along nonequilibrium nanowires,” Phys. Lett. A, vol. 374, pp. 313–318, 2009.10.1016/j.physleta.2009.10.032
- 26. Z.-Y. Guo and Q.-W. Hou, “Thermal wave based on the thermomass model,” J. Heat Trans - T. ASME, vol. 132, p. 072403 (6 pages), 2010.
- 27. V. A. Cimmelli, “Different thermodynamic theories and different heat conduction laws,” J. Non-Equilib. Thermodyn., vol. 34, pp. 229–333, 2009.10.1515/JNETDY.2009.016
- 28. D. Jou, A. Sellitto, and F. X. Alvarez, “Heat waves and phonon-wall collisions in nanowires,” Proc.R.Soc.A, vol. 467, pp. 2520–2533, 2011.
- 29. A. Jeffrey and T. Taniuti, Nonlinear Wave Propagation. New York: Academic, 1964.
- 30. B. Straughan, Heat waves. Berlin: Springer, 2011.10.1007/978-1-4614-0493-4
- 31. M. T. Yin and M. L. Cohen, “Theory of lattice-dynamical properties of solids: Application to Si and Ge,” Phys. Rev. B, vol. 26, pp. 3259–3272, 1992.
- 32. V. A. Cimmelli and W. Kosiński, “Nonequilibrium semi-empirical temperature in materials with thermal relaxation,” Arch. Mech., vol. 43, pp. 753–767, 1991.
- 33. V. A. Cimmelli and K. Frischmuth, “Determination of material functions through second sound measurements in a hyperbolic heat conduction theory,” Mathl. Comput. Modelling, vol. 24, pp. 19–28, 1996.10.1016/S0895-7177(96)00175-6
- 34. C. D. Levermore and G. C. Pomraning, “A flux-limited diffusion theory,” Astrophys. J., vol. 248, pp. 321–334, 1981.10.1086/159157
- 35. A. Sellitto and V. A. Cimmelli, “Flux Limiters in Radial Heat Transport in Silicon Nanolyers,” J. Heat Trans. – T. ASME, vol. 136, p. 071301 (6 pages), 2014.