Have a personal or library account? Click to login
Thermal rectification based on phonon hydrodynamics and thermomass theory Cover

Thermal rectification based on phonon hydrodynamics and thermomass theory

By: Yuan Dong  
Open Access
|May 2016

References

  1. 1. C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, Solid-state thermal rectifier, Science, vol. 314, no. 5802, pp. 1121–1124, 2006.
  2. 2. L. Wang and B. Li, Thermal memory: a storage of phononic information, Physical Review Letters, vol. 101, no. 26, p. 267203, 2008.
  3. 3. G. Wu and B. Li, Thermal rectifiers from deformed carbon nanohorns, Journal of Physics: Condensed Matter, vol. 20, no. 17, p. 175211, 2008.
  4. 4. M. Criado-Sancho, L. del Castillo, J. Casas-Vazquez, and D. Jou, Theoretical analysis of thermal rectification in a bulk Si/nanoporous Si device, Physics Letters A, vol. 376, no. 19, pp. 1641–1644, 2012.
  5. 5. N. Yang, G. Zhang, and B. Li, Carbon nanocone: a promising thermal rectifier, Applied Physics Letters, vol. 93, no. 24, p. 243111, 2008.
  6. 6. W. Kobayashi, Y. Teraoka, and I. Terasaki, An oxide thermal rectifier, Applied Physics Letters, vol. 95, no. 17, p. 171905, 2009.
  7. 7. N. Yang, G. Zhang, and B. Li, Thermal rectification in asymmetric graphene ribbons, Applied Physics Letters, vol. 95, no. 3, p. 033107, 2009.
  8. 8. C. R. Otey, W. T. Lau, and S. Fan, Thermal rectification through vacuum, Physical Review Letters, vol. 104, no. 15, p. 154301, 2010.
  9. 9. M. Schmotz, J. Maier, E. Scheer, and P. Leiderer, A thermal diode using phonon rectification, New Journal of Physics, vol. 13, no. 11, p. 113027, 2011.
  10. 10. S. H. Ju and X. G. Liang, Thermal rectification and phonon scattering in asymmetric silicon nanoribbons, Journal of Applied Physics, vol. 112, no. 2, p. 024307, 2012.
  11. 11. S. H. Ju and X. G. Liang, Thermal rectification and phonon scattering in silicon nanofilm with cone cavity, Journal of Applied Physics, vol. 112, no. 5, p. 054312, 2012.
  12. 12. M. Maldovan, Narrow low-frequency spectrum and heat management by thermocrystals, Physical Review Letters, vol. 110, no. 2, p. 025902, 2013.
  13. 13. R. Chen, A. I. Hochbaum, P. Murphy, and A. Majumdar, Thermal conductance of thin silicon nanowires, Physical Review Letters, vol. 101, no. 10, p. 105501, 2008.
  14. 14. A. Majumdar, Microscale heat conduction in dielectric thin films, Journal of Heat Transfer, vol. 115, no. 1, pp. 7–16, 1993.10.1115/1.2910673
  15. 15. G. Chen, Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices, Physical Review B, vol. 57, no. 23, p. 14958, 1998.
  16. 16. R. Yang and G. Chen, Thermal conductivity modeling of periodic two-dimensional nanocomposites, Physical Review B, vol. 69, no. 19, p. 195316, 2004.
  17. 17. A. J. H. McGaughey, E. S. Landry, D. P. Sellan, and et al., Size-dependent model for thin film and nanowire thermal conductivity, Applied Physics Letters, vol. 99, no. 13, p. 131904, 2011.
  18. 18. R. A. Guyer and J. A. Krumhansl, Solution of the linearized phonon boltzmann equation, Physical Review, vol. 148, no. 2, p. 766, 1966.10.1103/PhysRev.148.766
  19. 19. R. A. Guyer and J. A. Krumhansl, Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals, Physical Review, vol. 148, no. 2, p. 778, 1966.10.1103/PhysRev.148.778
  20. 20. M. Asheghi, M. Toulzebaev, K. Goodson, Y. Leung, and S. Wong, Temperature-dependent thermal conductivity of single-crystal silicon layers in soi substrates, Journal of Heat Transfer, vol. 120, no. 1, pp. 30–36, 1998.10.1115/1.2830059
  21. 21. Y. Ju and K. Goodson, Phonon scattering in silicon films with thickness of order 100 nm, Applied Physics Letters, vol. 74, no. 20, pp. 3005–3007, 1999.
  22. 22. W. Liu and M. Asheghi, Phonon boundary scattering in ultrathin single-crystal silicon layers, Applied Physics Letters, vol. 84, no. 19, pp. 3819–3821, 2004.
  23. 23. Y. Ju, Phonon heat transport in silicon nanostructures, Applied Physics Letters, vol. 87, no. 15, p. 153106, 2005.
  24. 24. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, Thermal conductivity of individual silicon nanowires, Applied Physics Letters, vol. 83, no. 14, pp. 2934–2936, 2003.
  25. 25. A. Sellitto, F. Alvarez, and D. Jou, Geometrical dependence of thermal conductivity in elliptical and rectangular nanowires, International Journal of Heat and Mass Transfer, vol. 55, no. 11, pp. 3114–3120, 2012.
  26. 26. A. Sellitto, F. Alvarez, and D. Jou, Phonon hydrodynamics and phonon-boundary scattering in nanosystems, Journal of Applied Physics, vol. 105, no. 1, p. 014317, 2009.
  27. 27. F. X. Alvarez, D. Jou, and A. Sellitto, Second law of thermodynamics and phonon-boundary conditions in nanowires, Journal of Applied Physics, vol. 107, no. 6, p. 064302, 2010.
  28. 28. Y. Dong, B. Y. Cao, and Z. Guo, Generalized heat conduction laws based on thermomass theory and phonon hydrodynamics, Journal of Applied Physics, vol. 110, no. 6, p. 063504, 2011.
  29. 29. M. Wang and Z. Y. Guo, Understanding of temperature and size dependences of effective thermal conductivity of nanotubes, Physics Letters A, vol. 374, no. 42, pp. 4312–4315, 2010.
  30. 30. M. Wang, N. Yang, and Z. Y. Guo, Non-fourier heat conductions in nanomaterials, Journal of Applied Physics, vol. 110, no. 6, p. 064310, 2011.
  31. 31. Y. Dong, B. Y. Cao, and Z. Guo, Size dependent thermal conductivity of Si nanosystems based on phonon gas dynamics, Physica E: Low-dimensional Systems and Nanostructures, vol. 56, pp. 256–262, 2014.10.1016/j.physe.2013.10.006
  32. 32. J. M. Ziman, Electrons and phonons,. Oxford: Oxford University Press, 2001.10.1093/acprof:oso/9780198507796.001.0001
  33. 33. Y. Ma, Size-dependent thermal conductivity in nanosystems based on non-fourier heat transfer, Applied Physics Letters, vol. 101, no. 21, p. 211905, 2012.
  34. 34. C. de Tomas, A. Cantarero, A. F. Lopeandia, and F. X. Alvarez, From kinetic to collective behavior in thermal transport on semiconductors and semiconductor nanostructures, Journal of Applied Physics, vol. 115, no. 16, p. 164314, 2014.
Language: English
Page range: 26 - 38
Submitted on: Nov 1, 2014
Accepted on: Mar 5, 2015
Published on: May 20, 2016
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 Yuan Dong, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.