Have a personal or library account? Click to login
Electron transport in silicon nanowires having different cross-sections Cover

Electron transport in silicon nanowires having different cross-sections

Open Access
|May 2016

References

  1. 1. D. Ferry, S. Goodnick, and J. Bird, Transport in nanostructures. Cambridge University Press, 2009.10.1017/CBO9780511840463
  2. 2. R. Juhasz, N. Elfstro, and J. Linnros, Controlled fabrication of silicon nanowires by electron beam lithography and electrochemical size reduction, Nano Letters, vol. 5, no. 2, pp. 275–280, 2005.10.1021/nl048157315794610
  3. 3. M. Lundstrom and J. Wang, Does source-to-drain tunneling limit the ultimate scaling of mosfets?, IEDM Tech. Dig., pp. 707–710, 2002.
  4. 4. E. Ramayya, D. Vasileska, S. Goodnick, and I. Knezevic, Electron mobility in silicon nanowires, IEEE Trans. Nanotech., vol. 6, no. 1, pp. 113–117, 2007.10.1109/TNANO.2006.888521
  5. 5. E. Ramayya, D. Vasileska, S. Goodnick, and I. Knezevic, Electron transport in silicon nanowires: The role of acoustic phonon confinement and surface roughness scattering, J. Appl. Phys., vol. 104, p. 063711, 2008.
  6. 6. E. Ramayya and I. Knezevic, Self-consistent Poisson-Schrödinger-Monte Carlo solver: electron mobility in silicon nanowires, J. Comput. Electr., vol. 9, pp. 206–210, 2010.10.1007/s10825-010-0341-8
  7. 7. O. Muscato, W. Wagner, and V. Di Stefano, Numerical study of the systematic error in Monte Carlo schemes for semiconductors, ESAIM: M2AN, vol. 44, no. 5, pp. 1049–1068, 2010.
  8. 8. O. Muscato, W. Wagner, and V. Di Stefano, Properties of the steady state distribution of electrons in semiconductors, Kinetic and Related Models, vol. 4, no. 3, pp. 809–829, 2011.10.3934/krm.2011.4.809
  9. 9. O. Muscato, V. Di Stefano, and W. Wagner, A variance-reduced electrothermal Monte Carlo method for semiconductor device simulation, Comput. Math. with Appl., vol. 65, no. 3, pp. 520–527, 2013.10.1016/j.camwa.2012.03.100
  10. 10. M. Lenzi, P. Palestri, E. Gnani, A. Gnudi, D. Esseni, L. Selmi, and G. Baccarani, Investigation of the transport properties of silicon nanowires using deterministic and Monte Carlo approaches to the solution of the boltzmann transport equation, IEEE Trans. Electr. Dev., vol. 55, no. 8, pp. 2086–2096, 2008.
  11. 11. G. Ossig and F. Schuerrer, Simulation of non-equilibrium electron transport in silicon quantum wires, J. Comput. Electron., vol. 7, pp. 367–370, 2008.10.1007/s10825-008-0238-y
  12. 12. O. Muscato and V. Di Stefano, Hydrodynamic modeling of silicon quantum wires, J. Comput. Electron., vol. 11, no. 1, pp. 45–55, 2012.10.1007/s10825-012-0381-3
  13. 13. V. Di Stefano and O. Muscato, Seebeck effect in silicon semiconductors, Acta Appl. Math., vol. 122, no. 1, pp. 225–238, 2012.10.1007/s10440-012-9739-6
  14. 14. O. Muscato and V. Di Stefano, Hydrodynamic simulation of a n+ - n - n+ silicon nanowire, Contin. Mech. Thermodyn., vol. 26, pp. 197–205, 2014.10.1007/s00161-013-0296-7
  15. 15. T. Kuykendall, P. Pauzauskie, S. Lee, Y. Zhang, J. Goldberger, and P. Yang, Metalorganic chemical vapor deposition route to gan nanowires with triangular cross sections, Nano Letters, vol. 3, no. 8, pp. 1063–1066, 2003.
  16. 16. G. Pennelli and M. Piotto, Fabrication and characterization of silicon nanowires with triangular cross section, J. Appl. Phys., vol. 100, p. 054507, 2006.
  17. 17. G. Pennelli, Top down fabrication of long silicon nanowire devices by means of lateral oxidation, Microelec. Engineer., vol. 86, pp. 2139–2143, 2009.
  18. 18. G. Liang, W. Huang, C. S. Koong, J.-S. Wang, and J. Lan, Geometry effects on thermoelectric properties of silicon nanowires based on electronic band structures, J. Appl. Phys., vol. 107, p. 014317, 2010.
  19. 19. R. Khordad and H. Bahramiyan, Electron-phonon interaction effect on the energy levels and diamagnetic susceptibility of quantum wires: Parallelogram and triangle cross section, J. Appl. Phys., vol. 115, p. 124314, 2014.
  20. 20. D. Jou, J. Casas-Vázquez, and G. Lebon, Extended irreversible thermodynamics. Springer-Verlag, 2001.10.1007/978-3-642-56565-6
  21. 21. O. Muscato, R. Pidatella, and M. Fischetti, Monte Carlo and hydrodynamic simulation of a one dimensional n+ − n − n+ silicon diode, VLSI Design, vol. 6, no. 1-4, pp. 247–250, 1998.10.1155/1998/98910
  22. 22. O. Muscato and V. Di Stefano, Modeling heat generation in a submicrometric n+ − n − n+ silicon diode, J. Appl. Phys., vol. 104, no. 12, p. 124501, 2008.
  23. 23. O. Muscato and V. Di Stefano, Hydrodynamic modeling of the electro-thermal transport in silicon semiconductors, J. Phys.A:Math. Theor., vol. 44, no. 10, p. 105501, 2011.
  24. 24. O. Muscato and V. Di Stefano, An energy transport model describing heat generation and conduction in silicon semiconductors, J. Stat. Phys., vol. 144, no. 1, pp. 171–197, 2011.10.1007/s10955-011-0247-2
  25. 25. O. Muscato and V. Di Stefano, Heat generation and transport in nanoscale semiconductor devices via Monte Carlo and hydrodynamic simulations, COMPEL, vol. 30, no. 2, pp. 519–537, 2011.10.1108/03321641111101050
  26. 26. G. Mascali and V. Romano, A non parabolic hydrodynamical subband model for semiconductors based on the maximum entropy principle, Math. Comp. Model., vol. 55, no. 3-4, pp. 1003–1020, 2012.
  27. 27. V. Camiola, G. Mascali, and V. Romano, Numerical simulation of a double-gate mosfet with a subband model for semiconductors based on the maximum entropy principle, Contin. Mech.Thermodyn., vol. 24, no. 4-6, pp. 417–436, 2012.10.1007/s00161-011-0217-6
  28. 28. W.-K. Li and S. Blinder, Solution of the Schrödinger equation for a particle in an equilateral triangle, J. Math. Phys., vol. 26, no. 11, pp. 2784–2786, 1985.
  29. 29. S. Selberherr, Analysis and Simulation of Semiconductor Devices. Springer, 1984.10.1007/978-3-7091-8752-4
  30. 30. C. Jacoboni, C. Canali, G. Ottaviani, and A. Quaranta, A review of some charge transport properties for silicon, Solid State Electron, vol. 20, no. 2, pp. 77–89, 1977.10.1016/0038-1101(77)90054-5
  31. 31. O. Muscato and V. Di Stefano, Local equilibrium and off-equilibrium thermoelectric effects in silicon semiconductors, J. Appl. Phys., vol. 110, no. 9, p. 093706, 2011.
  32. 32. O. Muscato and V. Di Stefano, Electro-thermal behaviour of a sub-micron silicon diode, Semicond. Sci. Tech., vol. 28, no. 2, p. 025021, 2013.
  33. 33. E. Ramayya, L. Maurer, A. Davoody, and I. Knezevic, Thermoelectric properties of ultrathin silicon nanowires, Phys. Rev. B, vol. 86, no. 11, p. 115328, 2012.
  34. 34. Z. Aksamija and I. Knezevic, Thermoelectric properties of properties of silicon nanostructures, J. Comput. Electron., vol. 9, pp. 173–179, 2010.10.1007/s10825-010-0339-2
  35. 35. D. Jou, V. Cimmelli, and A. Sellito, Nonlocal heat transport with phonons and electrons: Application to metallic nanowires, Int. J. Heat Mass transf., vol. 55, no. 9-10, pp. 2338–2344, 2012.
  36. 36. A. Sellito, V. Cimmelli, and D. Jou, Thermoelectric effects and size dependency of the figure-of-merit in cylindrical nanowires, Int. J. Heat Mass transf., vol. 57, no. 1, pp. 109–116, 2013.10.1016/j.ijheatmasstransfer.2012.10.010
  37. 37. V. Cimmelli, A. Sellito, and D. Jou, A nonlinear thermodynamic model for a breakdown of the onsager symmetry and the efficiency of thermo-electric conversion in nanowires, Proc. Royal soc.A: Math., Phys. Eng. Sci., vol. 470, no. 2170, p. 20140265, 2014.
  38. 38. A. Sellito and V. Cimmelli, Flux limiters in radial heat transport in silicon nanolayers, J. Heat Transfer, vol. 136, no. 7, p. 071301, 2014.
Language: English
Page range: 8 - 25
Submitted on: Jan 3, 2015
Accepted on: May 7, 2015
Published on: May 20, 2016
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 Orazio Muscato, Tina Castiglione, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.