Have a personal or library account? Click to login
Some results on discrete eigenvalues for the Stochastic Nonlinear Schrödinger Equation in fiber optics Cover

Some results on discrete eigenvalues for the Stochastic Nonlinear Schrödinger Equation in fiber optics

By: Laura Prati and  Luigi Barletti  
Open Access
|Mar 2018

References

  1. 1. G. P. Agrawal, Nonlinear Fiber Optics. Academic Press, fifth ed., 2012.10.1016/B978-0-12-397023-7.00011-5
  2. 2. M. Secondini and E. Forestieri, The nonlinear Schrödinger equation in fiber-optic systems, Rivista di Matematica della Universitfia di Parma, vol. 8, pp. 69-98, 2008.
  3. 3. J. G. Proakis, Digital Communications. McGraw-Hill, 1983.
  4. 4. A. Papoulis, Probability, Random Variables, and Stochastic Processes. McGraw-Hill, 1984.
  5. 5. A. de Bouard and A. Debussche, The stochastic nonlinear Schrödinger equation in H1, Stochastic Analysis and Applications, vol. 21, no. 1, pp. 97-126, 2003.10.1081/SAP-120017534
  6. 6. M. I. Yousefi and F. R. Kschischang, Information transmission using the nonlinear Fourier transform, Part I: Mathematical tools, IEEE Trans- actions on Information Theory, vol. 60, no. 7, pp. 4312-28, 2014.
  7. 7. S. Civelli, L. Barletti, and M. Secondini, Numerical methods for the inverse nonlinear Fourier transform, in Tyrrhenian International Work- shop on Digital Communications, TIWDC 2015, IEEE, 2015.10.1109/TIWDC.2015.7323325
  8. 8. S. A. Derevyanko, J. E. Prilepsky, and S. K. Turitsyn, Capacity estimates for optical transmission based on the nonlinear Fourier transform, Nature Communications, vol. 7, no. 12710, 2016.
  9. 9. L. Barletti and M. Secondini, Signal-noise interaction in nonlinear optical fibers: a hydrodynamic approach, Optics Express, vol. 23, no. 21, pp. 27419-33, 2015.
  10. 10. P. P. Mitra and J. B. Stark, Nonlinear limits to the information capacity of optical fibre communications, Nature, vol. 411, pp. 1027-30, 2001.
  11. 11. R.-J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, Capacity limits of information transport in fiber-optic networks, Physical Review Letters, vol. 101, no. 16, p. 163901, 2008.
  12. 12. A. D. Ellis, J. Zhao, and D. Cotter, Approaching the non-linear shannon limit, Journal of Lightwave Technology, vol. 28, pp. 423-433, 2010.10.1109/JLT.2009.2030693
  13. 13. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, Capacity limits of optical fiber networks, Journal of Lightwave Technol- ogy, vol. 28, no. 4, pp. 662-701, 2010.10.1109/JLT.2009.2039464
  14. 14. D. J. Richardson, Filling the light pipe, Science, vol. 330, pp. 327-328, October 2010.10.1126/science.119170820947751
  15. 15. R. I. Killey and C. Behrens, Shannon's theory in nonlinear systems, Journal of Modern Optics, vol. 58, no. 1, pp. 1-10, 2011.10.1080/09500340.2010.539710
  16. 16. G. Busoni and L. Prati, Some remarks on a linearized Schrödinger equation, Rendiconti Lincei - Matematica e Applicazioni, vol. 26, pp. 1-25, 2015.10.4171/RLM/702
  17. 17. A. Hasegawa and T. Nyu, Eigenvalue communications, Journal of Light- wave Technology, vol. 11, no. 3, pp. 395-399, 1993.10.1109/50.219570
  18. 18. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Nonlinearevolution equations of physical significance, Physical Review Letters, vol. 31, no. 2, pp. 125-127, 1973.10.1103/PhysRevLett.31.125
  19. 19. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, The inverse scattering transform - Fourier analysis for nonlinear problems, Studies in Applied Mathematichs, vol. LIII, no. 4, pp. 249-315, 1974. 10.1002/sapm1974534249
  20. 20. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Trans- form. SIAM Studies in Applied Mathematics, SIAM, 1981.10.1137/1.9781611970883
  21. 21. M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equa- tions and Inverse Scattering. London Mathematical Society Lecture Note Series, Cambridge University Press, 1991.10.1017/CBO9780511623998
  22. 22. S. Oda, A. Maruta, and K. Kitayama, All-optical quantization scheme based on fiber nonlinearity, IEEE Photonics Technology Letters, vol. 16, no. 2, pp. 587-589, 2004.10.1109/LPT.2003.822221
  23. 23. E. Meron, M. Shtaif, and M. Feder, On the achievable communication rates of generalized soliton transmission systems, tech. rep., Preprint at https://arxiv.org/pdf/1207.0297v2.pdf, 2012.
  24. 24. H. Terauchi and A. Maruta, Eigenvalue modulated optical transmission system based on digital coherent technology, in Proceedings of 18th Op- toElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching (OECC/PS), (Kyoto, Japan), pp. 1-2, IEEE, June 30-July 4, 2013.10.1364/OECC_PS.2013.WR2_5
  25. 25. M. I. Yousefi and F. R. Kschischang, Information transmission using the nonlinear Fourier transform, Part III: Spectrum modulation, IEEE Transactions on Information Theory, vol. 60, no. 7, pp. 4346-69, 2014.
  26. 26. Z. Dong, S. Hari, T. Gui, K. Zhong, M. I. Yousefi, C. Lu, P.-K. A. Wai, F. R. Kschischang, and A. P. T. Lau, Nonlinear frequency division multiplexed transmission based on nft, IEEE Photonics Technology Letters, vol. 27, no. 15, pp. 1621-23, 2015.
  27. 27. S. Hari, M. I. Yousefi, and F. R. Kschischang, Multieigenvalue communication, Journal of Lightwave Technology, vol. 34, no. 13, pp. 3110-17, 2016.
  28. 28. J. E. Prilepsky, S. A. Derevyanko, and S. K. Turitsyn, Nonlinear spectral management: linearization of the lossless fiber channel, Optics Express, vol. 21, no. 20, pp. 24344-67, 2013.
  29. 29. J. E. Prilepsky, S. A. Derevyanko, K. J. Blow, I. Gabitov, and S. K. Turitsyn, Nonlinear inverse synthesis and eigenvalue division multiplexing in optical fiber channels, Physical Review Letters, vol. 113, p. 013901, July 2014.
  30. 30. S. T. Le, J. E. Prilepsky, and S. K. Turitsyn, Nonlinear inverse synthesis for high spectral eficiency transmission in optical fibers, Optic Express, vol. 22, no. 22, pp. 26720-41, 2014.
  31. 31. S. T. Le, J. E. Prilepsky, and S. K. Turitsyn, Nonlinear inverse synthesis technique for optical links with lumped amplification, Optic Express, vol. 23, no. 7, pp. 8317-28, 2015.
  32. 32. D. J. Kaup, A perturbation expansion for the Zakharov-Shabat inverse scattering transform, SIAM Journal on Applied Mathematics, vol. 31, no. 1, pp. 121-133, 1976.10.1137/0131013
  33. 33. V. I. Karpman and E. M. Maslov, A perturbation theory for the Korteweg de-Vries equation, Physics Letters A, vol. 60, no. 4, pp. 307-308, 1977.10.1016/0375-9601(77)90107-4
  34. 34. D. J. Kaup and A. C. Newell, Solitons as particles, oscillators, and in slowly changing media: A singular perturbation theory, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 361, no. 1707, pp. 413-446, 1978.
  35. 35. V. I. Karpman and V. V. Solov'ev, A perturbational approach to the two-soliton systems, Physica D: Nonlinear Phenomena, vol. 3, no. 3, pp. 487-502, 1981.10.1016/0167-2789(81)90035-X
  36. 36. V. V. Konotop and L. Vfiazquez, Nonlinear Random Waves. World Scienti fic, 1994.10.1142/2320
  37. 37. P. Kazakopoulos and A. L. Moustakas, Nonlinear Schrödinger equation with random Gaussian input: Distribution of inverse scattering data and eigenvalues, Physical Review E, vol. 78, no. 1, 016603, pp. 1-7, 2008.10.1103/PhysRevE.78.01660318764070
  38. 38. G. Falkovich, I. Kolokolov, V. Lebedev, V. Mezentsev, and S. Turitsyn, Non-Gaussian error probability in optical soliton transmission, Physica D: Nonlinear Phenomena, vol. 195, no. 1-2, pp. 1-28, 2004.10.1016/j.physd.2004.01.044
  39. 39. N. J. Zabusky and M. D. Kruskal, Interaction of \solitons" in a collisionless plasma and the recurrence of initial states, Physical Review Letters, vol. 15, no. 6, pp. 240-243, 1965.10.1103/PhysRevLett.15.240
  40. 40. C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Method for solving the Korteweg-de Vries equation, Physical Review Letters, vol. 19, no. 19, pp. 1095-97, 1967.
  41. 41. P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Communications on Pure and Applied Mathematics, vol. XXI, pp. 467-490, 1968.10.1002/cpa.3160210503
  42. 42. V. E. Zacharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP, vol. 34, no. 1, pp. 62-69, 1972.
  43. 43. S. Wahls and H. V. Poor, Introducing the fast nonlinear Fourier transform, in IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 5780-84, IEEE, 2013.
  44. 44. S. Wahls and H. V. Poor, Fast inverse nonlinear Fourier transform for generating multi-solitons in optical fiber, in IEEE International Sym- posium on Information Theory, pp. 1676-80, IEEE, 2015.
  45. 45. E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Nonlinear Op- tical Communication Networks. Wiley Series in Microwave and Optical Engineering, Wiley, 1998.
Language: English
Page range: 87 - 103
Submitted on: Jan 30, 2017
Accepted on: Feb 20, 2018
Published on: Mar 24, 2018
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Laura Prati, Luigi Barletti, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.