1. Bachelier, L. (1900), “Theorie de la speculaction”, Annales scientifiques de l’Ecole Normale Superieure, Vol 17., pp. 21-86, translated as “Theory of Speculation” in Cootner, P.H., The Random Character of Stock Market Prices, Cambridge, MIT Press 1967
3. Bassak, S. (2002), “Comparative study of portfolio insurance”, Journal of Economic Dynamics & Control, Vol. 26. No. 7-8, pp. 1217-124110.1016/S0165-1889(01)00043-4
6. Blattberg, R. C., Nicholas J. G. (1974), “A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices.” Journal of Business, Vol. 47 No. 2, pp. 244–280.10.1086/295634
9. Bouchard, J.P. (2008), Models of Randomness and Complexity, from Turbulence to Stock-Markets, The Physics of Aestetics, Leonardo, Vol. 41 No 3, pp. 239-243
11. Cesari, R., Cremonini, D. (2003), “Benchmarking, portfolio insurance and technical analysis: a Monte Carlo Simulation of dynamic strategies of asset allocation”, Journal of Economic Dynamics & Control, Vol 27. No 6., pp. 987-101110.1016/S0165-1889(02)00052-0
12. Constantinou, N., Khuman, A.D., Maringer, D. (2008), „Constant Proportion Portfolio Insurance: Statistical Properties and Practical Implications“, Working Paper No. 023-08, University of Essex, August 2008
13. Cottrell, M, de Bodt, E., Gregoire, Ph. (1996), “Simulating interest rate structure evolution on a long term horizon: a Kohonen map application”. Proceedings of Neural Networks in the Capital Markets, Californian Institute of Technology, Passadena, World Scientific Ed., pp.162-175
14. Cox, J.C., Ingersoll, J.E., Ross, S. A. (1985), “A Theory of the Term Structure of Interest Rates”, Econometrica, Vol. 53. No 2., pp.385-407.10.2307/1911242
16. Damodaran, A. (2008), „What is the riskfree rate? A Search for the Basic Building Block“, Stern School of Business, New York University, available at: http://people.stern.nyu.edu/adamodar/pdfiles/papers/riskfreerate.pdf / 08. January 2012)10.2139/ssrn.1317436
17. Deelstra, G. & Parker, G. (1995), A Covariance Equivalent Discretisation of the. CIR Model. Proceedings of the 5th AFIR International Colloquium (Actuarial approach for Financing Risks), Brussels
18. Deelstra, G. (2000), “Long-term returns in stochastic interest rate models: applications”, ASTIN Bulletin, The Journal of International Actuarial Association, Vol 30. No 1., pp. 123-14010.2143/AST.30.1.504629
19. Dersch, D. (2010), „Dynamic Portfolio Insurance without options“ in Kiesel R., Schrerer M., Zagst R. Alternative investments and strategies, Singapure, World Scientific Publishing Co., pp. 201-22410.1142/9789814280112_0009
21. Dichtl, H., Drobetz, W. (2010), “On the popularity of CPPI strategy: A Behavioral-Finance-Based Explanation and Design Recommendations”, The Journal of Wealth Management, Vol.13 No. 2, pp.41-5410.3905/jwm.2010.13.2.041
22. Fischer, T., May, A., Walther, B., (2003), „Anpassung eines CIR-1-Modells zur simulation der Zinsstrukturkurve“, (Estimation of CIR-1 Model for the Simulation of Interest Rate Curve), TU Darmstadt, Blätter der DGVFM (Official Journal of German Actuarial Society), pp. 193-206
23. Fischer, T., May, A., Walther, B., (2004), „Anpassung eines CIR-k-Modells zur simulation der Zinsstrukturkurve“,(Estimation of CIR-k Model for the Simulation of Interest Rate Curve), TU Darmstadt, Blätter der DGVFM (Official Journal of German Actuarial Society), pp. 369-28710.1007/BF02858081
24. Fischer, T., Roehrl, A. (2003), “Risk and performance optimization for portfolios of bonds and stocks”, Proceedings of the International AFIR Colloquium, Maastricht
30. Laurent, A. (2003). Derivatives and the Asset Allocation Decision: a Synthesis between Portfolio Diversification and Portfolio insurance, Ph.D. diss., University of St.Gallen, Bamberg, Difo Druck
31. Leland, H.E., Rubinstein, M. (1988), „The Evolution of Portfolio Insurance” in Luskin, D., PortfolioInsurance: A Guide to Dynamic Hedging, New York, John Wiley & Sons
33. Mauboussin, M.J., Bartholdson, K. (2002), „A Tail and two worlds, Fat tails and Investing“ in The Consilient observer (1) 7, Credit Suisse First Boston, available at http://www.trendfollowing.com/whitepaper/mauboussin.pdf /(04. November 2011)
34. Meyer-Bullerdiek, F., Schulz, M. (2004). Dynamische Portfolio Insurance-Strategien ohne Derivate im Rahmen der privaten Vermögensverwaltung: eine theoretische und empirische Analyse, Frankfurt a. M., Lang Verlag
37. Patton, A. J. (2004), “On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation” Journal of Financial Econometrics, Vol. 2 No. 1, pp.130–168.10.1093/jjfinec/nbh006
41. Schöttle, K., Werner R. (2010), „On the benefits of robust asset allocation for CPPI strategies“, in Kiesel, R., Schrerer, M., Zagst, R., Alternative investments and strategies, Singapure, World Scientific Publishing Co., pp. 295-32810.1142/9789814280112_0012
43. Wozniak L. (2006), “What is the hottest derivatives product this year? CPPI structures” available at http://www.financeasia.com/News/35205,whats-the-hottest-derivatives-product-this-year-cppi-structures.aspx / (08. June 2012)
44. www.ublfunds.com.pk, (2014), UBL Fund Managers Limited, Pioneers of CPPI based funds in Pakistan – Now introduce AIPPF-V, available at: http://www.ublfunds.com.pk/individual/2014/12/10/ubl-fund-managers-limited-pioneers-of-cppi-based-funds-in-pakistan-now-introduce-aippf-v / (25. august 2015)
46. Zaimovic, A. (2010). Assumptions and possibilities for application of estimation models for risk and returns in capital market of Bosnia and Herzegovina, unpublished Ph.D. diss., University of Sarajevo