Have a personal or library account? Click to login

About Applications of the Fixed Point Theory

By:
Open Access
|Jul 2017

References

  1. Alfuraidan, M., & Ansari, Q. (2016). Fixed point theory and graph theory: Foundations and integrative approaches, London, England: Academic Press-Elsevier.10.1016/B978-0-12-804295-3.50013-9
  2. Guran, L., & Bota, M.-F. (2015). Ulam-Hyers stability problems for fixed point theorems concerning α-ψ-Type contractive operators on KST-Spaces, International Conference on Nonlinear Operators, Differential Equations and Applications, Cluj-Napoca, Romania.
  3. Hasanzade Asl, J., Rezapour, S., & Shahzad, N. (2012). On fixed points of α-ψ-contractive multifunctions, Fixed Point Theory and Applications, 212. doi: 10.1186/1687-1812-2012-212.10.1186/1687-1812-2012-212
  4. Isac, G., Yuan, X.-Z., Tan, K. K., & Yu, I. (1998). The study of minimax inequalities, abstract economics and applications to variational inequalities and nash equilibria, Acta Appl. Math., 54(2), 135-166.
  5. Kohlberg, E., & Mertens, J. F. (1986). On the strategic stability of equilibrium points, Econometrica, 54, 1003-1037.10.2307/1912320
  6. Li, J. L. (2014). Several extensions of the abian-brown fixed point theorem and their applications to extended and generalized nash equilibria on chain-complete posets, J. Math. Anal. Appl., 409, 1084-1002.10.1016/j.jmaa.2013.07.070
  7. Lin, Z. (2005). Essential components of the set of weakly pareto-nash equilibrium points for multiobjective generalized games in two different topological spaces, Journal of Optimization Theory and Applications, 124(2), 387-405.10.1007/s10957-004-0942-0
  8. Longa, H. V., Nieto, J. J., & Son, N. T. K. (2016). New approach to study nonlocal problems for differential systems and partial differential equations in generalized fuzzy metric spaces, Preprint submitted to fuzzy sets and systems.
  9. Nadler, S. B. Jr. (1969). Multi-valued contraction mappings, Pacific J. Math., 30, 475-487.
  10. Owen, G. (1974). Teoria jocurilor, Bucureşti, Romania: Editura Tehnică.
  11. Rao, K. P. R., Ravi Babu, G., & Raju, V. C. C. (2009). Common fixed points for M-maps in fuzzy metric spaces, Annals of the “Constantin Brancusi” University of Târgu Jiu, Engineering Series, No. 2, 197-206.
  12. Rus, I. A., & Iancu, C. (2000). Modelare matematică, Cluj-Napoca, Romania: Transilvania Press.
  13. Rus, I. A., Petruşel, A., & Petruşel, G. (2008). Fixed Point Theory, Cluj-Napoca, Romania: Cluj University Press.
  14. Scarf, H. (1973). The computation of economic equilibria, New Haven and London, Yale University Press.10.1057/978-1-349-95189-5_451
  15. Song, Q.-Q., Guo, M., & Chen, H.-Z. (2016). Essential sets of fixed points for correspondences with application to nash equilibria, Fixed Point Theory, 17(1), 141-150.
  16. Vuong, P. T., Strodiot, J. J., Nguyen, V. H. (2012). Extragradient methods and linesearch algorithms for solving Ky Fan inequalities and fixed point problems, Journal of Optimization Theory and Applications, 155(2), 605-627.10.1007/s10957-012-0085-7
  17. Yang, H., & Yu, J. (2002). Essential components of the set of weakly pareto-nash equilibrium points, Applied Mathematics Letters, 15, 553-560.10.1016/S0893-9659(02)80006-4
  18. Yu, J., & Yang, H. (2004). The essential components of the set of equilibrium points for set-valued maps. J. Math. Anal. Appl., 300, 334-342.10.1016/j.jmaa.2004.06.042
DOI: https://doi.org/10.1515/bsaft-2017-0002 | Journal eISSN: 3100-5098 | Journal ISSN: 3100-508X
Language: English
Page range: 13 - 17
Published on: Jul 22, 2017
Published by: Nicolae Balcescu Land Forces Academy
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Amelia Bucur, published by Nicolae Balcescu Land Forces Academy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.