Centre for Disease Control & Prevention (1993): Revised classification system for HIV infection and expanded surveillance case dentition for AIDS among adolescents and adults. MMWR Recommendations and Reports.
Corradi G., Janssen R., Monica R. (2004): Numerical treatment of homogeneous semi- Markov processes in transient case: a straightforward approach. Methodology and Computing in Applied Probability 6: 233-246.10.1023/B:MCAP.0000017715.28371.85
D’Amico G., Janssen J., Giuseppe D., Monica R. (2009): HIV progression through two different temporal scales according to non-homogeneous semi Markov models. In: Proceedings of the 13th International Conference on Applied Stochastic Models and Data Analysis, Sakalauskas L, Skiadas C (eds.), pp. 473-476.
Dessie Z.G. (2014): Multi-State Models of HIV/AIDS by Homogeneous Semi-Markov Process. American Journal of Biostatistics 4: 21-28.10.3844/amjbsp.2014.21.28
Fonteijn H.M., Matthew J.C., Marc M., Josephine B., Manja L., et al. (2011): An Event-Based Disease Progression Model and its Application to Familial Alzheimer’s Disease. Springer-Verlag Berlin Heidelberg 6801: 748-759.10.1007/978-3-642-22092-0_61
Foucher Y., Mathieu E., Saint-Pierre P., Durand J.F., Daurès J.P. (2005): A semi Markov model based on generalized Weibull distribution with an illustration for HIV disease. Biometrical Journal 47: 825-833.10.1002/bimj.200410170
Goshu A.T., Dessie Z.G. (2013): Modeling Progression of HIV/AIDS Disease Stages Using Semi-Markov Processes. Journal of Data Science 11: 269-280.10.6339/JDS.2013.11(2).1136
Janssen J., Monica N. (2001): Numerical solution of non-homogenous semi Markov processes in transient case. Methodology and Computing in Applied Probability 3: 271-279.10.1023/A:1013719007075
Joly P., Commenges D. (1999): A penalized likelihood approach for a progressive three state model with censored and truncated data application to AIDS. Biometrics 55: 887-890. 10.1111/j.0006-341X.1999.00887.x
Masala G., Cannas G., Micocci M. (2014): Survival probabilities for HIV infected patients through semi-Markov processes. Biometrical Letters 51: 13 -36.10.2478/bile-2014-0002
Mathieu E., Yohann F., Pierre D., Jean-Pierre D. (2007): Parametric and nonhomogeneous semi-Markov process for HIV Control. PNHSM Process for HIV Control. Methodology and Computing Applied Probability 9(3): 389-397.10.1007/s11009-007-9033-7
Teni D.A., Asena T.F. (2015): Modelling of AIDS Disease Associated Risk Factors and Mortality in Gamo Gofa Zone, Ethiopia. World Journal of Medical Science 12(4): 424-437.