Have a personal or library account? Click to login
A selection modelling approach to analysing missing data of liver Cirrhosis patients Cover

A selection modelling approach to analysing missing data of liver Cirrhosis patients

Open Access
|Dec 2016

References

  1. Daniels M.J., Hogan J.W. (2008): Missing data in longitudinal studies: Strategies for Bayesian modeling and sensitivity analysis. CRC Press.10.1201/9781420011180
  2. Diggle P., Kenward M.G. (1994): Informative drop-out in longitudinal data analysis. Applied statistics pages 49–93.10.2307/2986113
  3. Dragset I.G. (2009): Analysis of longitudinal data with missing values. Project Thesis. Norwegian University of Scineces and Technology.
  4. Fitzmaurice G., Davidian M., Verbeke G., Molenberghs G. (2008): Longitudinal data analysis. CRC Press.10.1201/9781420011579
  5. Graham J.W. (2012): Missing data: Analysis and design. Springer Science & Business Media.
  6. Heckman J.J. (1976): The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models. In Annals of Economic and Social Measurement volume 5 pages 475–492. NBER.
  7. Kaciroti N.A., Raghunathan T. (2014): Bayesian sensitivity analysis of incomplete data: bridging pattern-mixture and selection models. Statistics in medicine 33(27): 4841–4857.10.1002/sim.630225256610
  8. Kaciroti N.A., Raghunathan T.E., Anthony Schork M., Clark N.M. (2008): A bayesian model for longitudinal count data with non-ignorable dropout. Journal of the Royal Statistical Society: Series C (Applied Statistics) 57(5): 521–534.
  9. Kaciroti N.A., Raghunathan T.E., Taylor J.M., Julius S. (2012): A bayesian model for time-to-event data with informative censoring. Biostatistics 13(2): 341–354.10.1093/biostatistics/kxr048329782722223746
  10. Kaciroti N.A., Schork M.A., Raghunathan T., Julius S. (2009): A bayesian sensitivity model for intention-to-treat analysis on binary outcomes with dropouts. Statistics in medicine 28(4): 572–585.10.1002/sim.349419072769
  11. Kamath P.S., Kim W. (2007): The model for end-stage liver disease (meld). Hepatology 45(3): 797–805.10.1002/hep.2156317326206
  12. Kim J.K., Yu C.L. (2012): A semiparametric estimation of mean functionals with nonignorable missing data. Journal of the American Statistical Association.10.1198/jasa.2011.tm10104
  13. Laird N.M., Ware J.H. (1982): Random-effects models for longitudinal data. Biometrics 38(4): 963–974.10.2307/2529876
  14. Nath D.C., Bhattacharje A. (2012): Pattern mixture modeling: An application in anti diabetes drug therapy on serum creatinine in type 2 diabetes patients. Asian Journal of Mathematics & Statistics 5(3): 71.
  15. Satty A., Mwambi H. (2013): Selection and pattern mixture models for modelling longitudinal data with dropout: An application study. SORT-Statistics and Operations Research Transactions 1(2): 131–152.
DOI: https://doi.org/10.1515/bile-2016-0007 | Journal eISSN: 2199-577X | Journal ISSN: 1896-3811
Language: English
Page range: 83 - 103
Published on: Dec 10, 2016
Published by: Polish Biometric Society
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2016 Dilip C. Nath, Ramesh K. Vishwakarma, Atanu Bhattacharjee, published by Polish Biometric Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.