Have a personal or library account? Click to login
The Acute Effect of a Single Exhaustive Sprint Exercise Session on Post-Exercise Fat Oxidation Rate Cover

The Acute Effect of a Single Exhaustive Sprint Exercise Session on Post-Exercise Fat Oxidation Rate

Open Access
|Aug 2018

References

  1. 1. Achten J., Jeukendrup A.E. (2003) Maximal fat oxidation during exercise in trained men. Int. J. Sports. Med., 24: 603-608.
  2. 2. Al Mulla N., Simonsen L., Bulow J. (2000) Post-exercise adipose tissue and skeletal muscle lipid metabolism in humans: the effects of exercise intensity. J. Physiol., 524: 919-928.10.1111/j.1469-7793.2000.00919.x
  3. 3. Aslankeser Z., Balcı Ş.S. (2017) Re-examination of the contribution of substrates to energy expenditure during high-intensity intermittent exercise in endurance athletes. Peer J., e3769. DOI: 10.7717/peerj.3769.10.7717/peerj.3769
  4. 4. Bergman B.C., Brooks G.A. (1999) Respiratory gas-exchange ratios during graded exercise in fed and fast­ed trained and untrained men. J. Appl. Physiol., 86: 479-487.
  5. 5. Bielinski R., Schutz Y., Jéquier E. (1985) Energy me­tabolism during the postexercise recovery in man. Am. J. Clin. Nutr., 42: 69-82.
  6. 6. Børsheim E., Bahr R. (2003) Effect of exercise intensity, duration and mode on post-exercise oxygen consump­tion. Sports Med., 33: 1037-1060.
  7. 7. Brooks G.A., Mercier J. (1994) Balance of carbohydrate and lipid utilization during exercise: the “crossover” con­cept. J. Appl. Physiol., 76: 2253-2261.
  8. 8. Burgomaster K.A., Howarth K.R., Phillips S.M., Rakobowchuk M., Macdonald M.J., McGee S.L., Gibala M.J. (2008) Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J. Physiol., 586: 151-160.
  9. 9. Chan H.H., Burns S.F. (2013) Oxygen consumption, sub­strate oxidation, and blood pressure following sprint in­terval exercise. Appl. Physiol. Nutr. Metab., 38: 182-187.
  10. 10. Cipryan L., Tschakert G., Hofmann P. (2017) Acute and post-exercise physiological responses to high-intensity interval training in endurance and sprint athletes. J. Sports. Sci. Med., 16: 219-229.
  11. 11. Donnelly J.E., Blair S.N., Jakicic J.M., Manore M.M., Rankin J.W., Smith B.K. (2009) American College of Sports Medicine Position Stand. Appropriate physical ac­tivity intervention strategies for weight loss and preven­tion of weight regain for adults. Med. Sci. Sports. Exerc., 41: 459-471.
  12. 12. Dubouchaud H., Butterfield G.E., Wolfel E.E., Berg­man B.C., Brooks G.A. (2000) Endurance training, ex­pression, and physiology of LDH, MCT1, and MCT4 in human skeletal muscle. Am. J. Physiol. Endocrinol. Me­tab., 278: E571-579.10.1152/ajpendo.2000.278.4.E571
  13. 13. Dumortier M., Thöni G., Brun J.F., Mercier J. (2005) Substrate oxidation during exercise: impact of time in­terval from the last meal in obese women. Int. J. Obes. (Lond.)., 29: 966-974.
  14. 14. Durnin J.V., Womersley J. (1974) Body fat assessed from total body density and its estimation from skinfold thick­ness: measurements on 481 men and women aged from 16 to 72 years. Br. J. Nutr., 32: 77-97.
  15. 15. Frayn K.N. (1983) Calculation of substrate oxidation rates in vivo from gaseous exchange. J. Appl. Physiol. Respir. Environ. Exerc. Physiol., 55: 628-634.
  16. 16. Freese E.C., Levine A.S., Chapman D.P., Hausman D.B., Cureton K.J. (2011) Effects of acute sprint interval cy­cling and energy replacement on postprandial lipemia. J. Appl. Physiol., 111: 1584-1589.
  17. 17. Frey G.C., Byrnes W.C., Mazzeo R.S. (1993) Factors influencing excess postexercise oxygen consumption in trained and untrained women. Metabolism, 42: 822-828.10.1016/0026-0495(93)90053-Q
  18. 18. Gaesser G.A., Brooks G.A. (1984) Metabolic bases of excess post-exercise oxygen consumption: a review. Med. Sci. Sports. Exerc., 16: 29-43.
  19. 19. González-Haro C., Galilea P.A., González-de-Suso J.M., Drobnic. F, Escanero J.F. (2007) Maximal lipidic power in high competitive level triathletes and cyclists. Br. J. Sports. Med., 41: 23-28.
  20. 20. Gore C.J., Withers R.T. (1990) The effect of exercise intensity and duration on the oxygen deficit and excess post-exercise oxygen consumption. Eur. J. Appl. Physiol. Occup. Physiol., 60: 169-174.
  21. 21. Henderson G.C., Fattor J.A., Horning M.A., Faghih­nia N., Johnson M.L., Mau T.L., Luke-Zeitoun M., Brooks G.A. (2007) Lipolysis and fatty acid metabolism in men and women during the postexercise recovery period. J. Physiol., 584: 963-981.
  22. 22. Hernandez C.A., Hernandez D.A., Wellington C.M., Kidd A. (2016) The experience of weight management in normal weight adults. Appl. Nurs. Res., 32: 289-295.
  23. 23. Howley E.T., Bassett D.R., Welch H.G. (1995) Criteria for maximal oxygen uptake: review and commentary. Med. Sci. Sports. Exerc., 27: 1292-1301.
  24. 24. Hunter G.R., Weinsier R.L., Bamman M.M., Larson D.E. (1998) A role for high intensity exercise on energy bal­ance and weight control. Int. J. Obes. Relat. Metab. Disord., 22: 489-493.
  25. 25. Justine M., Azizan A., Hassan V., Salleh Z., Manaf H. (2013) Barriers to participation in physical activity and exercise among middle-aged and elderly individuals. Singapore Med. J., 54: 581-586.
  26. 26. Keating S.E., Johnson N.A., Mielke G.I., Coombes J.S. (2017) A systematic review and meta-analysis of interval training versus moderate-intensity continuous training on body adiposity. Obes. Rev.; 18: 943-964.
  27. 27. Kimber N.E., Cameron-Smith D., McGee S.L., Har­greaves M. (2013) Skeletal muscle fat metabolism after exercise in humans: influence of fat availability. J. Appl. Physiol., 114: 1577-1585.10.1152/japplphysiol.00824.201223519231
  28. 28. Kuo C.C., Fattor J.A., Henderson G.C., Brooks G.A. (2005) Lipid oxidation in fit young adults during postex­ercise recovery. J. Appl. Physiol., 99: 349-356.
  29. 29. LaForgia J., Withers R.T., Gore C.J. (2006) Effects of ex­ercise intensity and duration on the excess post-exercise oxygen consumption. J. Sports Sci., 24: 1247-1264.
  30. 30. Lima-Silva A.E., Bertuzzi R.C., Pires F.O., Gagliardi J.F., Barros R.V., Hammond J., Kiss M.A. (2010) Relation­ship between training status and maximal fat oxidation rate. J. Sports. Sci. Med.; 9: 31-35.
  31. 31. Malatesta D., Werlen C., Bulfaro S., Chenevière X., Bor­rani F. (2009) Effect of high-intensity interval exercise on lipid oxidation during postexercise recovery. Med. Sci. Sports Exerc., 41: 364-374.
  32. 32. Melanson E.L., Sharp T.A., Seagle H.M., Horton T.J., Donahoo W.T., Grunwald G.K., Hamilton J.T., Hill J.O. (2002) Effect of exercise intensity on 24-h energy expenditure and nutrient oxidation. J. Appl. Physiol., 92: 1045-1052.
  33. 33. Melby C., Scholl C., Edwards G., Bullough R. (1993) Ef­fect of acute resistance exercise on postexercise energy expenditure and resting metabolic rate. J. Appl. Physiol., 75: 1847-1853.
  34. 34. Romijn J.A., Coyle E.F., Hibbert J., Wolfe R.R. (1992) Comparison of indirect calorimetry and a new breath 13C/12C ratio method during strenuous exercise. Am. J. Physiol., 263: 64-71.
  35. 35. Romijn J.A., Coyle E.F., Sidossis L.S., Rosenblatt J., Wolfe R.R. (2000) Substrate metabolism during different Physiol., 88: 1707-1714.
  36. 36. Russel W.D., Newton M. (2008) Short-term psychologi­cal effects of interactive video game technology exercise on mood and attention. Educ. Tech. Soc., 11: 294-308.
  37. 37. Schrauwen P., van Aggel-Leijssen D.P., Hul G., Wagen­makers A.J., Vidal H., Saris W.H., van Baak M.A. (2002) The effect of a 3-month low-intensity endurance training program on fat oxidation and acetyl-CoA carboxylase-2 expression. Diabetes, 51: 2220-2226.10.2337/diabetes.51.7.222012086953
  38. 38. Sedlock D.A., Fissinger J.A., Melby C.L. (1989) Effect of exercise intensity and duration on postexercise energy expenditure. Med. Sci. Sports Exerc., 21: 662-666.
  39. 39. Thomas C., Sirvent P., Perrey S., Raynaud E., Mercier J. (2004) Relationships between maximal muscle oxidative capacity and blood lactate removal after supramaximal exercise and fatigue indexes in humans. J. Appl. Physiol., 97: 2132-2138.
  40. 40. Thyfault J.P., Kraus R.M., Hickner R.C., Howell A.W., Wolfe R.R., Dohm G.L. (2004) Impaired plasma fatty ac­id oxidation in extremely obese women. Am. J. Physiol. Endocrinol. Metab., 287: 1076-1081.
  41. 41. Trapp E.G., Chisholm D.J., Boutcher S.H. (2007) Meta­bolic response of trained and untrained women during high-intensity intermittent cycle exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol., 293: 2370-2375.
  42. 42. Treuth M.S., Hunter G.R., Williams M. (1996) Effects of exercise intensity on 24-h energy expenditure and sub­strate oxidation. Med. Sci. Sports Exerc., 28: 1138-1143.
  43. 43. Tucker W.J., Angadi S.S., Gaesser G.A. (2016) Excess postexercise oxygen consumption after high-intensity and sprint interval exercise, and continuous steady-state exercise. J. Strength. Cond. Res., 30: 3090-3097.
  44. 44. Venables M.C., Achten J., Jeukendrup A.E. (2005) Deter­minants of fat oxidation during exercise in healthy men and women: a cross-sectional study. J. Appl. Physiol., 98: 160-167.
  45. 45. Warren A., Howden E.J., Williams A.D., Fell J.W., John­son N.A. (2009) Postexercise fat oxidation: effect of ex­ercise duration, intensity, and modality. Int. J. Sport Nutr. Exerc. Metab., 19: 607-623.
  46. 46. Weir J.B. (1949) New methods for calculating metabol­ic rate with special reference to protein metabolism. J. Physiol., 109:1-9.
  47. 47. Wewege M., van den Berg R., Ward R.E., Keech A. (2017) The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: a systematic review and meta-analysis. Obes. Rev., 18: 635-646.10.1111/obr.1253228401638
  48. 48. Weyer C., Pratley R.E., Salbe A.D., Bogardus C., Ra­vussin E., Tataranni P.A. (2000) Energy expenditure, fat oxidation, and body weight regulation: a study of meta­bolic adaptation to long-term weight change. J. Clin. En­docrinol. Metab., 85: 1087-1094.
  49. 49. Whyte L.J., Ferguson C., Wilson J., Scott R.A., Gill J.M. (2013) Effects of single bout of very high-intensity exer­cise on metabolic health biomarkers in overweight/obese sedentary men. Metabolism, 62: 212-219.10.1016/j.metabol.2012.07.01922999784
  50. 50. Whyte L.J., Gill J.M., Cathcart A.J. (2010) Effect of 2 weeks of sprint interval training on health-related out­comes in sedentary overweight/obese men. Metabolism, 59: 1421-1428.10.1016/j.metabol.2010.01.00220153487
  51. 51. Withers R.T., Sherman W.M., Clark D.G., Esselbach P.C., Nolan S.R., Mackay M.H., Brinkman M. (1991) Muscle metabolism during 30, 60 and 90 s of maximal cycling on an air-braked ergometer. Eur. J. Appl. Physiol. Occup. Physiol., 63: 354-362.
Language: English
Page range: 118 - 126
Submitted on: Mar 21, 2018
Accepted on: Jul 30, 2018
Published on: Aug 25, 2018
Published by: University of Physical Education in Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Zübeyde Aslankeser, Şükrü Serdar Balcı, published by University of Physical Education in Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.