Have a personal or library account? Click to login
Local Convergence and Radius of Convergence for Modified Newton Method Cover
Open Access
|Dec 2017

References

  1. [1] I.K. Argyros and S. George, Convergence analysis of a three step Newton-like method for nonlinear equations in Banach space under weak conditions, Analele Universitatii de Vest, Timisoara Seria Matematica si Informatica, LIV, (2016), 37–46.10.1515/awutm-2016-0013
  2. [2] J.A. Ezquerro and M.A. Hernandez, An optimization of Chebyshev’s method, Journal of Complexity, 25, (2009), 343–361.10.1016/j.jco.2009.04.001
  3. [3] M.A. Hernndez-Veron and N. Romero, On the Local Convergence of a Third Order Family of Iterative Processes, Algorithms, 8, (2015), 1121–1128.10.3390/a8041121
  4. [4] T.L. Hicks and J.D. Kubicek, On the Mann iteration process in a Hilbert spaces, J. Math. Anal. Appl., 59, (1977), 489–504.10.1016/0022-247X(77)90076-2
  5. [5] St. Maruster, The solution by iteration of nonlinear equations in Hilbert spaces, Proc. Amer. Math.Soc., 63, (1977), 69–73.10.1090/S0002-9939-1977-0636944-2
  6. [6] St. Maruster and I.A. Rus, Kannan contractions and strongly demicontractive mappings, Creative Mathematics and Informatics, 24, (2015), 171 – 180.10.37193/CMI.2015.02.10
  7. [7] St. Maruster, Estimating local radius of convergence for Picard iteration, Algorithms, 10, (2017), doi:10.3390/a10010010.10.3390/a10010010
  8. [8] J.M. Ortega and W.C. Rheinboldt, Iterative solution of nonlinear equation in several variables, Acad. Press, New York, 1970.
  9. [9] C.L. Outlaw, Mean value iteration for nonexpansive mappings in a Banach space, Pacific J. Math., 30, (1969), 747–759.10.2140/pjm.1969.30.747
  10. [10] F.A. Potra and V. Ptak, Nondiscrete induction and iterative proccesses, 1984.
  11. [11] Y. Qing and B.E. Rhoades, T-stability of Picard iteration in metric spaces, Fixed Point Theory and Applications, (2008), Article ID418971.10.1155/2008/418971
  12. [12] W.C. Rheinboldt, An adaptive continuation process for solving systems of nonlinear equations, Polish Acad. Sci. Banach Center Publ., 3, (1975), 129–140.10.4064/-3-1-129-142
  13. [13] H.F. Senter and W.G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc., 44, (1974), 375–308.10.1090/S0002-9939-1974-0346608-8
  14. [14] J.R. Sharma and P.K. Gupta, An efficient fifth order method for solving systems of nonlinear equations, Comput. Math. Appl., 67, (2014), 591–601.10.1016/j.camwa.2013.12.004
  15. [15] F. Soleymani, Optimal eighth-order simple root-finders free from derivative, WSEAS Transactions on Information Science and Applications, 8, (2011), 293–299.
  16. [16] R. Thukral, New modification of Newton with third order of convergence for solving nonlinear equation of type f(0) = 0, Amer. J. Comput. Appl. Math., 6, (2016), 14–18.
  17. [17] J.F.Traub, Iterative methods for the solution of equations, Chelsea Publishing Company, New York, 1982.
DOI: https://doi.org/10.1515/awutm-2017-0020 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 157 - 169
Submitted on: Feb 7, 2017
Accepted on: Jul 20, 2017
Published on: Dec 29, 2017
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2017 Ştefan Măruşter, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.