Have a personal or library account? Click to login
η-Ricci Solitons on Sasakian 3-Manifolds Cover

References

  1. [1] D. E. Blair, Lecture notes in Mathematics, Springer-Verlag Berlin, 509, 1976.
  2. [2] D. E. Blair, Riemannian Geometry of contact and symplectic manifolds, Birkhäuser, Boston, 2002.10.1007/978-1-4757-3604-5
  3. [3] D. E. Blair, T. Koufogiorgos, and R. Sharma, A classification of 3-dimensional contact metric manifolds with = φQ, Kodai Math. J.,13, (1990), 391–401.10.2996/kmj/1138039284
  4. [4] A. M. Blaga, η-Ricci solitons on Lorentzian para-Sasakian manifolds, Filomat, 30, (2016), no. 2, 489–496.
  5. [5] A. M. Blaga, η-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl., 20, (2015), 1–13.
  6. [6] C. Calin and M. Crasmareanu, From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds, Bull. Malays. Math. Soc., 33(3), (2010), 361–368.
  7. [7] T. Chave and G. Valent, Quasi-Einstein metrics and their renormalizability properties, Helv. Phys. Acta., 69, (1996), 344–347.
  8. [8] T. Chave and G. Valent, On a class of compact and non-compact quasi-Einstein metrics and their renormalizability properties, Nuclear Phys. B., 478, (1996), 758–778.10.1016/0550-3213(96)00341-0
  9. [9] J. T. Cho and M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J., 61, no. 2, (2009), 205–212.10.2748/tmj/1245849443
  10. [10] U. C. De and S. Biswas, A note on ξ-conformally flat contact manifolds, Bull. Malays. Math. Soc., 29, (2006), 51–57.
  11. [11] U. C. De and A. K. Mondal, Three dimensional Quasi-Sasakian manifolds and Ricci solitons, SUT J. Math., 48(1), (2012), 71–81.10.55937/sut/1342636147
  12. [12] U. C. De and A. K. Mondal, The structure of some classes of 3-dimensional normal almost contact metric manifolds, Bull. Malays. Math. Soc., 36(2), (2013), 501-509
  13. [13] U. C. De and A. Sarkar, On φ-Ricci symmetric Sasakian manifolds, Proc. Jangjeon Math. Soc., 11, (2008), 47–52.
  14. [14] Avik De and J. B. Jun, On N(k)-contact metric manifolds satisfying certain curvature conditions, Kyungpook Math. J., 51, 4, (2011), 457–468.10.5666/KMJ.2011.51.4.457
  15. [15] S. Deshmukh, Jacobi-type vector fields on Ricci solitons, Bull. Math. Soc. Sci. Math. Roumanie, 55(103), 1, (2012), 41–50.
  16. [16] S. Deshmukh, H. Alodan, and H. Al-Sodais, A Note on Ricci Soliton, Balkan J. Geom. Appl., 16, 1, (2011), 48–55.
  17. [17] D. Friedan, Non linear models in 2+ dimensions, Ann. Phys., 163, (1985), 318–419.10.1016/0003-4916(85)90384-7
  18. [18] A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata, 7, (1978), 259–280.10.1007/BF00151525
  19. [19] R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity, (Contemp. Math. Santa Cruz, CA, 1986), American Math. Soc., (1988), 237–263.10.1090/conm/071/954419
  20. [20] T. Ivey, Ricci solitons on compact 3-manifolds, Diff. Geom. Appl., 3, (1993), 301–307.10.1016/0926-2245(93)90008-O
  21. [21] P. Majhi and U. C. De, Classifications of N(k)-contact metric manifolds satisfying certain curvature conditions, Acta Math. Univ. Commenianae, LXXXIV, 1, (2015), 167–178.
  22. [22] C.Özgür, Contact metric manifolds with cyclic-parallel Ricci tensor, Diff. Geom. Dynamical systems, 4, (2002), 21–25.
  23. [23] C.Özgür and S. Sular, On N(k)-contact metric manifolds satisfying certain conditions, SUT J. Math., 44, 1, (2008), 89–99.10.55937/sut/1217621903
  24. [24] D. G. Prakasha and B. S. Hadimani, η-Ricci solitons on para-Sasakian manifolds, J. Geom., 108, (2017), 383–392.10.1007/s00022-016-0345-z
  25. [25] K. Yano., Integral Formulas in Riemannian Geometry, Marcel Dekker, New York, 1970.
DOI: https://doi.org/10.1515/awutm-2017-0019 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 143 - 156
Submitted on: Aug 25, 2017
Accepted on: Oct 8, 2017
Published on: Dec 29, 2017
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2017 Pradip Majhi, Uday Chand De, Debabrata Kar, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.