Have a personal or library account? Click to login
Expanding the Applicability of Four Iterative Methods for Solving Least Squares Problems Cover

Expanding the Applicability of Four Iterative Methods for Solving Least Squares Problems

Open Access
|Dec 2017

References

  1. [1] S. Amat, M.A. Hernández, and N. Romero, Semilocal convergence of a sixth order iterative method for quadratic equations, Appl. Numer. Math., 62, (2012), 833–841.10.1016/j.apnum.2012.03.001
  2. [2] I.K. Argyros and Á.A. Magreñán, Iterative Algorithms I, Nova Science Publishers Inc., New York, 2016.
  3. [3] I.K. Argyros and Á.A. Magreñán, Iterative methods and their dynamics with applications, CRC Press, New York, 2017.10.1201/9781315153469
  4. [4] I.K. Argyros and Á.A. Magreñán, Iterative Algorithms II, Nova Science Publishers Inc., New York, 2017.
  5. [5] J. Chen and W. Li, Convergence of Gauss-Newton’s method and uniqueness of the solution, Appl. Math. Comput., 170, (2005), 687–705.10.1016/j.amc.2004.12.055
  6. [6] W. M. Haübler, A Kantorovich convergence analysis for the Gauss-Newton method, Numer. Math., 48, (1986), 119–125.10.1007/BF01389446
  7. [7] Á.A. Magreñán, Different anomalies in a Jarratt family of iterative root finding methods, Appl. Math. Comput., 233, (2014), 29–38.10.1016/j.amc.2014.01.037
  8. [8] Á.A. Magreñán, A new tool to study real dynamics:, Appl. Math. Comput., 248, (2014), 29–38.10.1016/j.amc.2014.09.061
  9. [9] J.M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York, 1970.
  10. [10] J.F. Potra, On an iterative algorithm of order 1.839 ...for solving nonlinear operator equations, Numer. Func. Anal. Opt., 7(1), (1985), 75–106.10.1080/01630568508816182
  11. [11] S.M. Shankhno and O.P. Gnatyshyn, On an iterative algorithm of order 1.839 ...for solving the nonlinear least squares problems, Appl. Math. Comput., 161, (2005), 253–264.10.1016/j.amc.2003.12.025
  12. [12] R. Ewing, K. Gross, and C. Martin, Newton’s method estimates from data at one point, in:The merging of disciplines: New directions in Pure Applied and Computational Mathematics, Springer, New York, 1986.10.1007/978-1-4612-4984-9
  13. [13] G. W. Stewart, On the continuity of the generalized inverse, SIAM J. Math., 17, (1960), 33–45.10.1137/0117004
  14. [14] J.F. Traub and H. Wozniakowski, Convergence and complexity of Newton iteration, J. Assoc. Comput. Math., 29, (1979), 250–258.10.1145/322123.322130
DOI: https://doi.org/10.1515/awutm-2017-0013 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 33 - 49
Submitted on: Aug 14, 2017
|
Accepted on: Oct 25, 2017
|
Published on: Dec 29, 2017
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2017 Ioannis K. Argyros, Janak Raj Sharma, Deepak Kumar, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.