Have a personal or library account? Click to login
Fixed Point Theorem for Cyclic (μ, ψ, φ)-Weakly Contractions via a New Function Cover

Fixed Point Theorem for Cyclic (μ, ψ, φ)-Weakly Contractions via a New Function

Open Access
|Dec 2017

References

  1. [1] Ya. I. Alber and S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert spaces, New results in Operator Theory, Advances Appl. (I. Gohberg and Yu. Lyubich, eds.), Birkhauser, Basel,8, (1997), 7–22.10.1007/978-3-0348-8910-0_2
  2. [2] D. W. Boyd and T. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20, (1969), 458–464.10.1090/S0002-9939-1969-0239559-9
  3. [3] S. Chandok, Some common fixed point theorems for generalized nonlinear contractive mappings, Comput. Math. Appl., 62, (2011), 3692–3699.10.1016/j.camwa.2011.09.009
  4. [4] S. Chandok, Common fixed points, invariant approximation and generalized weak contractions, Internat. J. Math. Math. Sci., 2012, (2012), Article ID 102980.10.1155/2012/102980
  5. [5] S. Chandok, Common fixed points for generalized nonlinear contractive mappings in metric spaces, Mat. Vesnik, 65, (2013), 29–34.10.1155/2013/879084
  6. [6] S. Chandok, A fixed point result for weakly Kannan type cyclic contractions, Internat. J. Pure Appl. Math., 82, (2), (2013), 253–260.10.1186/1687-1812-2013-28
  7. [7] S. Chandok and V. Popa, Fixed point theorem for cyclic (μ, ψ, φ)-weakly contractions, “Vasile Alecsandri” University of Bacău, Scientific Studies and Research, Series Mathematics and Informatics, 23, (2), (2013), 69–76.10.1186/1687-1812-2013-28
  8. [8] S. Chandok, Some common fixed point results for generalized weak contractive mappings in partially ordered metric spaces, J. Nonlinear Anal. Optim., 4, (1), (2013), 45–52.10.1186/1029-242X-2013-486
  9. [9] S. Chandok, M. S. Khan, and K. P. R. Rao, Some coupled common fixed point theorems for a pair of mappings satisfying a contractive condition of rational type without monotonicity, Internat. J. Math. Anal., 7, (9), (2013), 433–440.10.12988/ijma.2013.13039
  10. [10] S. Chandok and M. Postolache, Fixed point theorem for weakly Chatterjea type cyclic contractions, Fixed Point Theory Appl., 2013, (2013), 9 pages.10.1186/1687-1812-2013-28
  11. [11] Chi-Ming Chen, Fixed point theorems for ψ-contractive mappings in ordered metric spaces, J. Appl. Math., 2012, (2012), Article ID 756453, 10 pages.10.1155/2012/756453
  12. [12] E. Karapinar and K. Sadarangani, Fixed point theory for cyclic (φ-ψ)-contractions, Fixed Point Theory Appl., 2011: 69, (2011), doi.org/10.1186/1687-1812-2011-69.10.1186/1687-1812-2011-69
  13. [13] E. Karapinar and I. M. Erhan, Best proximity on different type contractions, Appl. Math. Information Sci., 5, (2011), 342–353.
  14. [14] E. Karapinar and I. M. Erhan, Cyclic contractions and fixed point theorems, Filomat, 26, (2012), 777–782.10.2298/FIL1204777K
  15. [15] W. A. Kirk, P. S. Srinivasan, and P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory, 4, (1), (2003), 79–89.
  16. [16] M. Pacurar and I. A. Rus, Fixed point theory for cyclic φ-contractions, Nonlinear Anal., 72, (2010), 2683–2693.10.1016/j.na.2009.08.002
  17. [17] S. Reich, Some fixed point problems, Atti Acad. Naz. Lincei Ren. Cl. Sci. Fis. Mat. Natur., 57, (1975), 194–198.
  18. [18] B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal., 47, (2001), 2683–2693.10.1016/S0362-546X(01)00388-1
DOI: https://doi.org/10.1515/awutm-2017-0011 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 3 - 15
Submitted on: Apr 11, 2015
Accepted on: Sep 24, 2017
Published on: Dec 29, 2017
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2017 Muaadh Almahalebi, Amir Hojat Ansari, Sumit Chandok, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.