Have a personal or library account? Click to login
f– Kenmotsu Metric as Conformal Ricci Soliton Cover

References

  1. [1] A. Barros, R. Batista, and E. Ribeiro Jr, Conformal almost Ricci solitons with constant scalar curvature are gradient, Monstsh Mat, 174, (2014), 29-39.10.1007/s00605-013-0581-3
  2. [2] N. Basu and A. Bhattacharyya, Conformal Ricci soliton in Kenmotsu manifold, Global Journal of Advanced Research on Classical and Modern Geometries, 4, (2015), 15-21.
  3. [3] C. L. Bejan and M. Crasmareanu, Ricci solitons in manifolds with quasi-constant curvature, Publ. Math. Debrecen, 78, (2011), 235-243.10.5486/PMD.2011.4797
  4. [4] A. Bhattacharyya and N. Basu, Some curvature identities on gradient shrinking conformal Ricci soliton, Analele Stiintifice Ale Universitatii Al. I. Cuza Din Iasi(S.N) Mathematica, Tomul LXI, 61, (2015), 245-252.10.2478/aicu-2014-0027
  5. [5] C. Calin and M. Crasmareanu, From the Eisenhart problem to the Ricci solitons in f-Kenmotsu manifolds, Bull. Malay. Math. Soc., 33, (2010), 361-368.
  6. [6] X. Cao, Compact gradient shrinking Ricci solitons with positive curvature operator, J. Geom. Anal., 17, (2007), 425-433.10.1007/BF02922090
  7. [7] B. Chow, P. Lu, and L. Ni, Hamilton’s Ricci ow, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI; Science Press, New York, 77, (2006)10.1090/gsm/077
  8. [8] A. E. Fisher, An introduction to conformal Ricci ow, Class. quantum Grav., 21, (2004), S171-S218.10.1088/0264-9381/21/3/011
  9. [9] A. Ghosh, Kenmotsu 3-metric as a Ricci soliton, Chaos, Solitons and Fractals, 44, (2011), 647-650.10.1016/j.chaos.2011.05.015
  10. [10] R. S. Hamilton, Three manifold with positive Ricci curvature, J. Difierential Geom., 17, (1982), 255-306.10.4310/jdg/1214436922
  11. [11] R. S. Hamilton, The Ricci ow on surfaces, Contemporary Mathematics, 71, (1988), 237-261.10.1090/conm/071/954419
  12. [12] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., 24, (1972), 93-103.10.2748/tmj/1178241594
  13. [13] H. G. Nagaraja and C. R. Premalatha, Ricci solitons in Kenmotsu manifolds, Journal of Mathematical Analysis, 3, (2012), 18-24.
  14. [14] Z. Olszak and R. Rosco, Normal locally conformal almost cosympletic manifolds, Publ. Math. Debrecen, 39, (1991), 315-323.10.5486/PMD.1991.39.3-4.12
  15. [15] G. Perelman, The entropy formula for geometry and its applications, arXiv:0211159v1, [mathDG], (2002.)
  16. [16] G. Perelman, Ricci ow on surgery on three manifolds, arXiv:0303109v1, [mathDG], (2003)
  17. [17] S. Pigola, M. Rigoli, M. Rimoldi, and A. G. Setti, Ricci almost solitons, arXiv:1003.2945v1, [mathDG], (2010)
  18. [18] B. B. Sinha and R. Sharma, On para-A-Einstein manifolds, Publications De L’Institut Mathematique, Nouvelle serie, 34-48, (1983), 211-215.
  19. [19] P. Topping, Lectures on the Ricci ow, Cambridge university press, Cambridge, UK, 2006.10.1017/CBO9780511721465
  20. [20] M. M. Tripathi, Ricci solitons in contact metric manifolds, arXiv:0801, 4222v1, [mathDG], (2008)
  21. [21] A. Yildiz, U.C. De, and M. Turan, On 3-dimensional f-Kenmotsu manifolds and Ricci solitons, Ukrain. Math. J., 65, (2013), 620-628.10.1007/s11253-013-0806-6
DOI: https://doi.org/10.1515/awutm-2017-0009 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 119 - 127
Submitted on: May 18, 2016
Accepted on: Dec 21, 2016
Published on: Sep 2, 2017
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2017 H. G. Nagaraja, K. Venu, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.