Have a personal or library account? Click to login
On the Diophantine Equation x2 – kxy + ky2 + ly = 0, l = 2n Cover
Open Access
|Sep 2017

References

  1. [1] Y. Hu and M. Le, On the Diophantine equation x2 -kxy +y2 +lx = 0, Chin. Ann. Math., 34B, (2013), 715-718.10.1007/s11401-013-0792-x
  2. [2] O. Karaatli and Z. Şiar, On the Diophantine equation x2 - kxy + ky2 + ly = 0, l 2 f1; 2; 4; 8g, Afr. Diaspora J. Math., 14, (2012), 24-29.
  3. [3] R. Keskin, Solutions of some quadratic Diophantine equations, Comput. Math. Appl., 60, (2010), 2225-2230.10.1016/j.camwa.2010.08.012
  4. [4] A. Marlewski and P. Zarzycki, Infinitely many solutions of the Diophantine equation x2 - kxy + y2 + x = 0, Comput. Math. Appl., 47, (2004), 115-121.10.1016/S0898-1221(04)90010-7
  5. [5] P. Yuan and Y. Hu, On the Diophantine equation x2-kxy+y2+lx = 0, l 2 f1; 2; 4g, Comput. Math. Appl., 61, (2011), 573-577.
DOI: https://doi.org/10.1515/awutm-2017-0008 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 115 - 118
Submitted on: Jul 12, 2016
Accepted on: Jan 11, 2017
Published on: Sep 2, 2017
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2017 Sukrawan Mavecha, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.