Have a personal or library account? Click to login
Hermitian Forms and Inequalities for Sequences and Power Series of Operators in Hilbert Spaces Cover

Hermitian Forms and Inequalities for Sequences and Power Series of Operators in Hilbert Spaces

By: S. S. Dragomir  
Open Access
|Sep 2017

References

  1. [1] N. G. de Bruijn, Problem 12, Wisk. Opgaven, 21, (1960), 12-14.10.1080/00031305.1960.10501685
  2. [2] M. L. Buzano, Generalizzazione della diseguaglianza di Cauchy-Schwarz. (Italian), Rend. Sem. Mat. Univ. e Politech. Torino, 31, (1974), 405-409.
  3. [3] S. S. Dragomir, Some refinements of Schwartz inequality, Simpozionul de Matematici şi Aplicaţii, Timişoara, Romania, 1-2 Noiembrie 1985, 13-16.
  4. [4] S. S. Dragomir, Grüss inequality in inner product spaces, The Australian Math Soc. Gazette, 26, (1999), 66-70.
  5. [5] S. S. Dragomir, A generalization of Grüss' inequality in inner product spaces and applications, J. Math. Anal. Appl., 237, (1999), 74-82.10.1006/jmaa.1999.6452
  6. [6] S. S. Dragomir, Some Grüss type inequalities in inner product spaces, J. Inequal. Pure & Appl. Math., 4, (2003), Article 42. (Online http://jipam.vu.edu.au/article.php?sid=280).
  7. [7] S. S. Dragomir, Reverses of Schwarz, triangle and Bessel inequalities in inner product spaces, J. Inequal. Pure & Appl. Math., 5, (2004), Article 76. (Online : http://jipam.vu.edu.au/article.php?sid=432).
  8. [8] S. S. Dragomir, New reverses of Schwarz, triangle and Bessel inequalities in inner product spaces, Austral. J. Math. Anal. & Applics., 1, (2004), Article 1. (Online: http://ajmaa.org/cgi-bin/paper.pl?string=nrstbiips.tex).
  9. [9] S. S. Dragomir, On Bessel and Grüss inequalities for orthornormal families in inner product spaces, Bull. Austral. Math. Soc., 69, (2004), 327-340.10.1017/S0004972700036066
  10. [10] S. S. Dragomir, Advances in Inequalities of the Schwarz, Grüss and Bessel Type in Inner Product Spaces, Nova Science Publishers Inc, New York,x+249 p., 2005.
  11. [11] S. S. Dragomir, Reverses of the Schwarz inequality in inner product spaces generalising a Klamkin-McLenaghan result, Bull. Austral. Math. Soc., 73, (2006), 69-78.10.1017/S0004972700038636
  12. [12] S. S. Dragomir, Advances in Inequalities of the Schwarz, Triangle and Heisenberg Type in Inner Product Spaces., Nova Science Publishers, Inc., New York,xii+243 pp. ISBN: 978-1-59454-903-8; 1-59454-903-6 (Preprint http://rgmia.org/monographs/advancees2.htm), 2007.
  13. [13] S. S. Dragomir, Some new Grüss' type inequalities for functions of selfadjoint operators in Hilbert spaces, Sarajevo J. Math., 6, (2010), 89107.10.1155/2010/496821
  14. [14] S. S. Dragomir, Inequalities for the Čebyşev functional of two functions of selfadjoint operators in Hilbert spaces, RGMIA Res. Rep. Coll., 11(e), (2008), Art. 17.
  15. [15] S. S. Dragomir, Some inequalities for the Čebyşev functional of two functions of selfadjoint operators in Hilbert spaces, RGMIA Res. Rep. Coll., 11(e), (2008), Art.8.
  16. [16] S. S. Dragomir, Inequalities for the Čebyşev functional of two functions of selfadjoint operators in Hilbert spaces, Aust. J. Math. Anal. & Appl., 6, (2009), Article 7, pp. 1-58.
  17. [17] S. S. Dragomir, Some inequalities for power series of selfadjoint operators in Hilbert spaces via reverses of the Schwarz inequality, Integral Transforms Spec. Funct., 20, (2009), 757-76710.1080/10652460902910054
  18. [18] S. S. Dragomir, Operator Inequalities of the Jensen, Čebyşev and Grüss Type, Springer Briefs in Mathematics. Springer, New York, xii+121 pp. ISBN: 978-1-4614- 1520-6, 2012.10.1007/978-1-4614-1521-3_3
  19. [19] S. S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type, Springer Briefs in Mathematics. Springer, New York, x+112 pp. ISBN: 978-1-4614-1778-1, 2012.10.1007/978-1-4614-1779-8_3
  20. [20] S. S. Dragomir, Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces, Springer Briefs in Mathematics. Springer, x+120 pp. ISBN: 978-3-319-01447-0; 978-3-319-01448-7, 2013.
  21. [21] S. S. Dragomir, M. V. Boldea, C. Buşe, and M. Megan, Norm inequalities of Čebyşev type for power series in Banach algebras, J. Inequal. Appl., 2014:294, (2014), 19 pp.10.1186/1029-242X-2014-294
  22. [22] S. S. Dragomir and B. Mond, On the superadditivity and monotonicity of Schwarz's inequality in inner product spaces, Contributions, Macedonian Acad. of Sci and Arts, 15, (1994), 5-22.
  23. [23] S. S. Dragomir and B. Mond, Some inequalities for Fourier coefficients in inner product spaces, Periodica Math. Hungarica, 32, (1995), 167-172.10.1007/BF01882192
  24. [24] S. S. Dragomir, J. Pečarič, and J. Şandor, The Chebyshev inequality in pre- Hilbertian spaces. II., Proceedings of the Third Symposium of Mathematics and its Applications (Timişoara, 1989), (1990), 75-78.
  25. [25] S. S. Dragomir and J. Şandor, The Chebyshev inequality in pre-Hilbertian spaces. I., Proceedings of the Second Symposium of Mathematics and its Applications (Timişoara, 1987), (1988.), 61-64.
  26. [26] K. E. Gustafson and D. K. M. Rao, Numerical Range, Springer-Verlag, New York, Inc., 1997.10.1007/978-1-4613-8498-4
  27. [27] S. Kurepa, Note on inequalities associated with Hermitian functionals, Glasnik Matemaţcki, 3, (1968), 196-205.
DOI: https://doi.org/10.1515/awutm-2017-0005 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 63 - 86
Submitted on: Apr 11, 2016
Accepted on: Apr 12, 2016
Published on: Sep 2, 2017
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2017 S. S. Dragomir, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.