Have a personal or library account? Click to login
Fractional Partial Random Differential Equations with State-Dependent Delay Cover

Fractional Partial Random Differential Equations with State-Dependent Delay

By: Mouffak Benchohra and  Amel Heris  
Open Access
|Sep 2017

References

  1. [1] S. Abbas D. Baleanu and M. Benchohra, Global attractivity for fractional order delay partial integro-differential equations, Adv. Difference Equ, 2012, (2012), 19.10.1186/1687-1847-2012-62
  2. [2] S. Abbas and M. Benchohra, Darboux problem for perturbed partial differential equations of fractional order with ffnite delay, Nonlinear Anal. Hybrid Syst, 3, (2009), 597-604.10.1016/j.nahs.2009.05.001
  3. [3] S. Abbas and M. Benchohra, Fractional order partial hyperbolic differential equations involving Caputo's derivative, Stud. Univ. Babeffs-Bolyai Math, 57, (2012), 469-479.
  4. [4] S. Abbas and M. Benchohra, Upper and lower solutions method for Darboux problem for fractional order implicit impulsive partial hyperbolic differential equations, Acta Univ. Palacki. Olomuc, 51, (2012), 5-18.
  5. [5] S. Abbas M. Benchohra and A. Cabada, Partial neutral functional integro differential equations of fractional order with delay, Bound. Value Prob, 2012, (2012), 128.10.1186/1687-2770-2012-128
  6. [6] S. Abbas M. Benchohra and L. Gorniewicz, Existence theory for impulsive partial hyperbolic functional differential equations involving the Caputo fractional derivative, Sci. Math. Jpn, (2010), 271-282.
  7. [7] S. Abbas M. Benchohra and G.M. N'Gufferffekata, Topics in Fractional Differ- ential Equations, Springer, New York, 2012.10.1007/978-1-4614-4036-9
  8. [8] S. Abbas M. Benchohra and G.M. N'Gufferffekata, Advanced Fractional Differ- ential and Integral Equations, Nova Science Publishers, New York, 2015.
  9. [9] S. Abbas M. Benchohra and A.N.Vityuk, On fractional order derivatives and Darboux problem for implicit differential equations, Frac. Calc. Appl. Anal, 15, (2012), 168-182.10.2478/s13540-012-0012-5
  10. [10] S. Abbas M. Benchohra and Y. Zhou, Darboux problem for tractional order neutral functional partial hyperbolic differential equations, Int. J. Dynam. Systems Differ. Equa, 2, (2009), 301-312.10.1504/IJDSDE.2009.031110
  11. [11] B. Ahmad and J.J. Nieto, Riemann-Liouville fractional differential equations with fractional boundary conditions, Social Text, 13, (2012), 329-336.10.1186/1687-2770-2012-124
  12. [12] J. Appell, Implicit functions, nonlinear integral equations, and the measure of noncompactness of the superposition operator, J. Math. Anal. Appl, 83, (1981), 251-263.10.1016/0022-247X(81)90261-4
  13. [13] J. M. Ayerbee Toledano T. Dominguez Benavides and G. Lopez Acedo, Measures of noncompactness in metric ffxed point theory, Operator Theory, Advances and Applications, Birkhäuser, Berlin, 1997.10.1007/978-3-0348-8920-9
  14. [14] D. Baleanu K. Diethelm E. Scalas and J.J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientiffc Publishing, New York, 2012.10.1142/8180
  15. [15] J. Belair, Population models with state-dependent delays, Lect. Notes Pure Appl. Maths., Dekker, New York, 131, (1990), 156-176.
  16. [16] J. Bffelair and M.C. Mackey, Consumer memory and price uctuations on commodity markets: An intergrodifferential model, J. Dynam. Differential Equations, 1, (1989), 299-325.
  17. [17] J. Belair M. C. Mackey and J. Mahaffy, Age-structured and two delay models for erythropoiesis, Math. Biosciences, 128, (1995), 317-346.10.1016/0025-5564(94)00078-E
  18. [18] A.T. Bharucha-Reid, Random Integral Equations, Academic Press, New York
  19. [19] D. Bothe, Multivalued perturbation of m-accretive differential inclusions, Isr. J. Math, 108, (1998), 109-138.10.1007/BF02783044
  20. [20] F. Chen D. Sun and J. Shi, Periodicity in a food-limited population model with toxicants and state-dependent delays, J. Math. Anal. Appl, 288, (2003), 136-146.10.1016/S0022-247X(03)00586-9
  21. [21] T. Czlapinski, On the Darboux problem for partial differential-functional equations with inffnite delay at derivatives, Nonlinear Anal, 44, (2001), 389-398.10.1016/S0362-546X(99)00275-8
  22. [22] T. Czlapinski, Existence of solutions of the Darboux problem for partial differential functional equations with inffnite delay in a Banach space, Comment. Math. Prace Mat., 35, (1995), 111-122.
  23. [23] R.D. Driver and M.J. Norrisn, Note on uniqueness for a one-dimentional twobody problem of classical electrodynamics, Ann. Phys, 42, (1964), 347-351.10.1016/0003-4916(67)90076-0
  24. [24] H. W. Engl, A general stochastic ffxed-point theorem for continuous random operators on stochastic domains, J. Math. Anal. Appl, 66, (1978), 220-231.10.1016/0022-247X(78)90279-2
  25. [25] J. K. Hale and S. Verduyn Lunel, Introduction to Functional -Differential Equa- tions, Springer, New York, 1993. 10.1007/978-1-4612-4342-7
  26. [26] R. Hilfer, Applications of Fractional Calculus in Physics,World Scientiffc, Singapore, 2000.10.1142/3779
  27. [27] S. Itoh, Random ffxed point theorems with applications to random differential equations in Banach spaces, J. Math. Anal. Appl, 67, (1979), 261-273.10.1016/0022-247X(79)90023-4
  28. [28] A. A. Kilbas and S. A. Marzan, Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, Differential Equations, 41, (2005), 84-89.10.1007/s10625-005-0137-y
  29. [29] A. A. Kilbas H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V, Amsterdam, 2006.
  30. [30] V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional-Differential Equations, Kluwer Academic Publishers, Dordrecht, 1999.10.1007/978-94-017-1965-0
  31. [31] G.S. Ladde and V. Lakshmikantham, Random Differential Inequalities, Academic Press, New York, 1980.
  32. [32] L. Liu F. Guo C. Wu and Y. Wu, Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces, J. Math. Anal. Appl, 309, (2005), 638-649.10.1016/j.jmaa.2004.10.069
  33. [33] V. Lupulescu and S.K. Ntouyas, Random fractional differential equations, Int. Electron. J. Pure Appl. Math, 4, (2012), 119-136.
  34. [34] V. Lupulescu D. O'Regan and Ghaus ur Rahman, Existence results for random fractional differential equations, Opuscula Math, 34, (2014), 813-825.10.7494/OpMath.2014.34.4.813
  35. [35] M.C. Mackey, Commodity price uctuations: price dependent delays and nonlinearities as explanatory factors, J. Econ. Theory, 48, (1989), 479-59.
  36. [36] M.C. Mackey and J. Milton, Feedback delays and the orign of blood cell dynamics, Comm. Theor. Biol, 1, (1990), 299-372.
  37. [37] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal., Theory Methods Appl, 4, (1980), 985-999.10.1016/0362-546X(80)90010-3
  38. [38] M. D. Ortigueira, Fractional Calculus for Scientists and Engineers, Springer, Dordrecht, 2011.10.1007/978-94-007-0747-4
  39. [39] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  40. [40] H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, 2011.10.1007/978-1-4419-7646-8
  41. [41] S. Stanek, Limit properties of positive solutions of fractional boundary value problems, Appl. Math. Comput, 219, (2012), 2361-2370.10.1016/j.amc.2012.09.008
  42. [42] V. E. Tarasov, Fractional Dynamics. Applications of Fractional Calculus to Dynam- ics of Particles, Fields and Media, Springer, Heidelberg, 2010.10.1007/978-3-642-14003-7_11
  43. [43] C.P. Tsokos and W.J. Padgett, Random Integral Equations with Applications to Life Sciences and Engineering, Academic Press, New York, 1974.
  44. [44] A. N. Vityuk and A. V. Golushkov, Existence of solutions of systems of partial differential equations of fractional order, Nonlinear Oscil, 7, (2004), 318-325.10.1007/s11072-005-0015-9
  45. [45] D.R. Will and C.T.H. Baker, Stepsize control and continuity consistency for statedependent delay-differential equations, J. Comput. Appl. Math, 53, (1994), 163-170.10.1016/0377-0427(94)90043-4
  46. [46] J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer, New York, 1996.10.1007/978-1-4612-4050-1
DOI: https://doi.org/10.1515/awutm-2017-0002 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 21 - 35
Submitted on: Oct 24, 2016
Accepted on: Dec 23, 2016
Published on: Sep 2, 2017
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2017 Mouffak Benchohra, Amel Heris, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.