Have a personal or library account? Click to login
Gradual and Cumulative Improvements to the Classical Differential Evolution Scheme through Experiments Cover

Gradual and Cumulative Improvements to the Classical Differential Evolution Scheme through Experiments

By: George Anescu  
Open Access
|Dec 2016

References

  1. [1] K. Price and R. Storn, Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces, Journal of Global Optimization, 11 (4), (1997), 341 - 35910.1023/A:1008202821328
  2. [2] R. Storn, On the usage of differential evolution for function optimization, Biennial Conference of the North American Fuzzy Information Processing Society (NAFIPS), (1996), 519 - 523
  3. [3] K. Price, R. Storn, and J. Lampinen, Differential Evolution - A Practical Approach to Global Optimization, Springer-Verlag, Berlin, Heidelberg, 2005
  4. [4] J. Liu and J. Lampinen, On setting the control parameter of the differential evolution method, Proceedings of the 8th International Conference on Soft Computing (MENDEL), (2002), 11 - 18
  5. [5] D. Zaharie, Critical values for the control parameters of differential evolution algorithms, Proceedings of the 8th International Conference on Soft Computing (MENDEL), (2002), 62 - 67
  6. [6] J. Liu and J. Lampinen, A fuzzy adaptive differential evolution algorithm, Soft Computing, 9 (6), (2005), 448 - 46210.1007/s00500-004-0363-x
  7. [7] A.K. Qin and P.N. Suganthan, Self-adaptive differential evolution algorithm for numerical optimization, In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), 2005, 2, (2005), 1785 - 1791
  8. [8] A.K. Qin, V.L. Huang, and P.N. Suganthan, Differential evolution algorithm with strategy adaptation for global numerical optimization, IEEE Transactions on Evolutionary Computation, 13 (2), (2008), 398 - 41710.1109/TEVC.2008.927706
  9. [9] J. Brest, S. Greiner, B. Boskoviffc, M. Mernik, and V. Zumer, Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark functions, IEEE Transactions on Evolutionary Computation, 10 (6), (2006), 646 - 657
  10. [10] S. Das and P.N. Suganthan, Differential Evolution: A Survey of the State-of- the-Art, IEEE Transactions on Evolutionary Computation, 15 (1), (2011), 4 - 31
  11. [11] S. Das, P.N. Suganthan, and S.S. Mullick, Recent advances in differential evolution - An updated survey, Swarm and Evolutionary Computation, 27 (1), (2016), 1 - 3010.1016/j.swevo.2016.01.004
  12. [12] F. Neri and V. Tirronen, Recent advances in differential evolution: a survey and experimental analysis, Artificial Intelligence Review, 33 (1-2), (2010), 61 - 106
  13. [13] J.D. Pintér, Global Optimization: Software, Test Problems, and Applications, Ch. 15 in Handbook of Global Optimization, Volume 2, (Ed. P. M. Pardalos and H. F. Romeijn), Kluwer Academic Publishers, Dordrecht, Boston, London, 200210.1007/978-1-4757-5362-2_15
  14. [14] K. Deb, An effcient constraint handling method for genetic algorithms, Computer Methods in Applied Mechanics and Engineering, 186 (2-4), (2000), 311 - 33810.1016/S0045-7825(99)00389-8
  15. [15] R. Mallipeddi and P.N. Suganthan, Differential Evolution with Ensemble of Constraint Handling Techniques for solving CEC 2010 Benchmark Problems, In Proceedings IEEE Congress on Evolutionary Computation (CEC), 2010, 1 - 810.1109/CEC.2010.5586330
  16. [16] G. Anescu and I. Prisecaru, NSC-PSO, a novel PSO variant without speeds and coefficients, Proceedings of 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2015, 460 - 46710.1109/SYNASC.2015.74
  17. [17] G. Anescu, An imperialistic strategy approach to continuous global optimization problem, Proceedings of 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2014, 549 - 55610.1109/SYNASC.2014.79
  18. [18] Z. Michalewicz, Genetic Algorithms + Data structures = Evolution Programs, Springer-Verlag, New York, 199410.1007/978-3-662-07418-3
  19. [19] J. Momin and Yang Xin-She, A literature survey of benchmark functions for global optimization problems, Int. Journal of Mathematical Modelling and Numerical Optimisation, 4 (2), (2013), 150 - 19410.1504/IJMMNO.2013.055204
  20. [20] M. Molga and C. Smutnicki, Test functions for optimization needs, http://www.robertmarks.org/Classes/ENGR5358/Papers/functions.pdf (last time accessed in February, 2016), (2005), 1 - 43
  21. [21] A.J. Keane, Experiences with optimizers in structural design, Proceedings of the 1st Conf. on Adaptive Computing in Engineering Design and Control, University of Plymouth, UK, (1994), 14 - 27
  22. [22] S.K. Mishra, Minimization of Keane's Bump Function by the Repulsive Particle Swarm and the Differential Evolution Methods, http://mpra.ub.uni-muenchen.de/3098/ (last time accessed in February, 2016), (2007), 1 - 1210.2139/ssrn.983836
  23. [23] R. Storn, Optimization of wireless communications applications using differential evolution, In SDR Technical Conference, Denver, (2007)
  24. [24] D. Karaboga and B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, Journal of Global Optimization, 39 (3), (2007), 459 - 471
DOI: https://doi.org/10.1515/awutm-2016-0012 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 13 - 35
Submitted on: Sep 23, 2016
Accepted on: Feb 12, 2016
Published on: Dec 30, 2016
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2016 George Anescu, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.