Have a personal or library account? Click to login
Fekete-Szegö Inequalities of a Subclass of Multivalent Analytic Functions Cover

Fekete-Szegö Inequalities of a Subclass of Multivalent Analytic Functions

Open Access
|Sep 2016

References

  1. [1] Ludwig Bieberbach, Über die koeffinzienten derjenigen potenzreihen, welche cine schlichte Abbildung des Einheitskreises wermitteln. S.-B. Preuss. Akad. Wiss., (1916), 940–955.
  2. [2] A. Chonweerayoot, D. K. Thomas, and W. Upakarnitikaset, On the Fekete-Szegő theorem for close-to-convex functions, Publ. Inst. Math. (Beograd) (N.S.), 52(66), (1992), 18–26
  3. [3] M. Darus and D. K. Thomas, The Fekete-Szegő theorem for strongly close-to-convex functions, Sci. Math., 3 (2), (2000), 201–212
  4. [4] M. Fekete and G. Szegö, Eine Bemerkung Uber Ungerade Schlichte Funktionen, J. London Math. Soc., S1-8 (2), 85.10.1112/jlms/s1-8.2.85
  5. [5] A. W. Goodman, Univalent functions. Vol. I, Mariner Publishing Co., Inc., Tampa, FL, 1983.
  6. [6] Ian Graham and Gabriela Kohr, Geometric function theory in one and higher dimensions, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 255, 2003.10.1201/9780203911624
  7. [7] M. K. Aouf, H. E. Darwish, and A. A. Attiya, On a class of certain analytic functions of complex order, Indian J. Pure Appl. Math., 32 (10), (2001), 1443–1452.
  8. [8] A. A. Attiya, On a generalization class of bounded starlike functions of complex order, Appl. Math. Comput., 187 (1), (2007), 62–67.10.1016/j.amc.2006.08.103
  9. [9] Anatoly A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 204, 2006
  10. [10] Wolfram Koepf, On the Fekete-Szegő problem for close-to-convex functions, Proc. Amer. Math. Soc., 101 (1), (1987), 89–9510.1090/S0002-9939-1987-0897076-8
  11. [11] K. Kuroki and S. Owa, Notes on new class for certain analytic functions, RIMS Kokyuroku, 1772 (1), (2011), 21–25.10.15352/afa/1399900988
  12. [12] Wan Cang Ma and David Minda, A unified treatment of some special classes of univalent functions, 1994, 157–169.
  13. [13] William Ma and David Minda, Coefficient inequalities for strongly close-to-convex functions, J. Math. Anal. Appl., 205 (2), (1997), 537–553.10.1006/jmaa.1997.5234
  14. [14] M. A. Nasr and M. K. Aouf, Starlike function of complex order, J. Natur. Sci. Math., 25 (1), (1985), 1–12.
  15. [15] Shigeyoshi Owa, On the distortion theorems. I, Kyungpook Math. J., 18 (1), (1978), 53–59.
  16. [16] Shigeyoshi Owa, On applications of the fractional calculus, Math. Japon., 25 (2), (1980), 195–206.
  17. [17] Shigeyoshi Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39 (5), (1987), 1057–1077.10.4153/CJM-1987-054-3
  18. [18] J. Patel and A. K. Mishra, On certain subclasses of multivalent functions associated with an extended fractional differintegral operator, J. Math. Anal. Appl., 332 (1), (2007), 109–122.10.1016/j.jmaa.2006.09.067
  19. [19] V. Ravichandran, Yasar Polatoglu, Metin Bolcal, and Arzu Sen, Certain subclasses of starlike and convex functions of complex order, Hacet. J. Math. Stat., 34, (2005), 9–15.
  20. [20] Fuad S. M. Al Sarari and S. Latha, Fekete-Szego inequalities and (j, k)-symmetric functions, Electron. J. Math. Anal. Appl., 3 (2), (2015), 249–256.
  21. [21] Grigore Ştefan Sălăgean, Subclasses of univalent functions, 1983, 362–372.10.1007/BFb0066543
  22. [22] Stefan G. Samko, Anatoly A. Kilbas, and Oleg I. Marichev, Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon, 1993
  23. [23] A. C. Schaeffer and D. C. Spencer, Coefficient Regions for Schlicht Functions, American Mathematical Society Colloquium Publications, Vol. 35, American Mathematical Society, New York, N. Y., 1950.
  24. [24] T. M. Seoudy and M. K. Aouf, Coefficient estimates of new classes of q-starlike and q-convex functions of complex order, J. Math. Inequal., 10 (1), (2016), 135–145.10.7153/jmi-10-11
  25. [25] T. N. Shanmugam, C. Ramachandran, and V. Ravichandran, Fekete-Szegő problem for subclasses of starlike functions with respect to symmetric points, Bull. Korean Math. Soc., 43 (3), (2006), 589–598.10.4134/BKMS.2006.43.3.589
  26. [26] Jae Ho Choi, Yong Chan Kim, and Toshiyuki Sugawa, A general approach to the Fekete-Szegö problem, J. Math. Soc. Japan, 59 (3), (2007), 707–727.10.2969/jmsj/05930707
  27. [27] Paweł Wiatrowski, The coefficients of a certain family of holomorphic functions, Zeszyty Nauk. Uniw. Łódz. Nauki Mat. Przyrod. Ser. II, 39 Mat., (1971), 75–85.
DOI: https://doi.org/10.1515/awutm-2016-0010 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 167 - 183
Submitted on: Mar 25, 2016
Accepted on: Jun 28, 2016
Published on: Sep 24, 2016
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2016 C. Selvaraj, K. R. Karthikeyan, S. Lakshmi, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.