[1] F. Ben Adda and J. Cresson, Quantum derivatives and the Schrödinger equation, Chaos Solitons Fractals, 9, (2004), 1323-133410.1016/S0960-0779(03)00339-4
[2] Y. Ciann-Dong, On the existence of complex spacetime in relativistic quantum mechanics, Chaos Solitons Fractals, (2008), 316-33110.1016/j.chaos.2008.01.019
[3] R. Colistete Jr., C. Leygnac, and R. Kerner, Higher-order geodesic deviations applied to the Kerr metric, Class. Quantum Grav, (2002), 4573-459010.1088/0264-9381/19/17/309
[4] M. Davidson, A study of the Lorentz-Dirac equation in complex spacetime for clues to emergent spacetime, J. Phys.: Conf. Series, Conf.1, (2012), (11 pages).10.1088/1742-6596/361/1/012005
[8] R. S. Herman, Derivation of the geodesic equation and defining the Christoffel symbols, a lecture given at the University of North Carolina Wilmington, March 13, 2008
[11] R. Kerner, J. W. von Holten, and R. Colistete Jr, Relativistic epicycles: another approach to geodesic deviations, Class. Quantum Grav, (2001), 4725-474210.1088/0264-9381/18/22/302
[13] Z.-Y. Li, J.-L. Fu, and L.-Q. Chen, Euler–Lagrange equation from nonlocal-intime kinetic energy of nonconservative system, Phys.Lett, (2009), 106-10910.1016/j.physleta.2009.10.080
[15] R. Ya. Matsyuk, The variational principle for the uniform acceleration and quasispin in two-dimensional space-time, SIGMA, 4, (2008), 016-02710.3842/SIGMA.2008.016
[16] R. Ya. Matsyuk, Lagrangian analysis of invariant third-order equations of motion in relativistic classical particle mechanics, English transl.: Soviet Phys. Dokl, 30, (1985), 458-460
[18] J. Saucedo and V. M. Villanueva J. A. Nieto, Relativistic top deviation equation and gravitational waves, Phys. Lett, (2003), 175-18610.1016/S0375-9601(03)00623-6
[20] L. Nottale, The theory of scale-relativity: Non-differentiable geometry and fractal space-time, Computing Anticipatory Systems, CASYS’03-Sixth International Conference (Liege, Belgium, 11-16 August 2003), Daniel M. Dubois Editor, American Institute of Physics Conference Proceedings, (2004), 68-95
[22] R. Penrose, On the twistor description of massless fields, In Proceedings Complex Manifold Techniques In Theoretical Physics, ed. by Lawrence, (1978), 55-91
[23] R. Penrose and M.A. MacCallum, Twistor theory: an approach to the quantization of fields and space-time, Phys. Rep, (1972), 241-31610.1016/0370-1573(73)90008-2