Have a personal or library account? Click to login
Perturbed Companions of Ostrowski’s Inequality for Absolutely Continuous Functions (I) Cover

Perturbed Companions of Ostrowski’s Inequality for Absolutely Continuous Functions (I)

Open Access
|Sep 2016

References

  1. [1] G. A. Anastassiou, Univariate Ostrowski inequalities, revisited, Monatsh. Math., (2002), 175–189.10.1007/s006050200015
  2. [2] P. Cerone and S. S. Dragomir, Midpoint-type rules from an inequalities point of view, Ed. G. A. Anastassiou, Handbook of Analytic-Computational Methods in Applied Mathematics, CRC Press, New York, 135-200, 2000.10.1201/9780429123610-4
  3. [3] P. Cerone and S. S. Dragomir, New bounds for the three-point rule involving the Riemann-Stieltjes integrals, Advances in Statistics Combinatorics and Related Areas, C. Gulati, et al., World Science Publishing, 53-62, 2002.10.1142/9789812776372_0006
  4. [4] P. Cerone, S. S. Dragomir, and C. E. M. Pearce, A generalised trapezoid inequality for functions of bounded variation, Turkish J. Math., (2000), 147-163.
  5. [5] P. Cerone, S. S. Dragomir, and J. Roumeliotis, Some Ostrowski type inequalities for time differentiable mappings and applications, Demonstratio Mathematica, (1999), 697–712.10.1515/dema-1999-0404
  6. [6] S. S. Dragomir, Ostrowski’s inequality for monotonous mappings and applications, J. Korean Soc. Ind. Appl. Math., (1999), 127-135.
  7. [7] S. S. Dragomir, The Ostrowski’s integral inequality for Lipschitzian mappings and applications, Comp. Math. Appl., (1999), 33-37.10.1016/S0898-1221(99)00282-5
  8. [8] S. S. Dragomir, The Ostrowski integral inequality for mappings of bounded variation, Bull. Austral. Math. Soc., (1999), 495-508.10.1017/S0004972700036662
  9. [9] S. S. Dragomir, On the midpoint quadrature formula for mappings with bounded variation and applications, Kragujevac J. Math., (2000), 13-18.
  10. [10] S. S. Dragomir, On the Ostrowski’s inequality for Riemann-Stieltjes integral, Korean J. Appl. Math., (2000), 477-485.
  11. [11] S. S. Dragomir, On the Ostrowski’s integral inequality for mappings with bounded variation and applications, Math. Ineq. Appl., (2001), 33-40.10.7153/mia-04-05
  12. [12] S. S. Dragomir, On the Ostrowski inequality for Riemann-Stieltjes integral where is of Holder type and is of bounded variation and applications, J. Korean Soc. Ind. Appl. Math., (2001), 35-45.
  13. [13] S. S. Dragomir, Ostrowski type inequalities for isotonic linear functionals, J. Inequal. Pure Appl. Math., Art. 68., (2002)
  14. [14] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math., no. 2 (Article 31), (2002), 8 pp.
  15. [15] S. S. Dragomir, A refinement of Ostrowski’s inequality for absolutely continuous functions whose derivatives belong to and applications, Libertas Math., (2002), 49–63.
  16. [16] S. S. Dragomir, Some companions of Ostrowski’s inequality for absolutely continuous functions and applications. Preprint RGMIA Res. Rep. Coll., Bull. Korean Math. Soc., no. 2 (Suppl. Art. 29.), (2005), 213–230.10.4134/BKMS.2005.42.2.213
  17. [17] S. S. Dragomir, An Ostrowski like inequality for convex functions and applications, Revista Math. Complutense, (2003), 373-382.10.5209/rev_REMA.2003.v16.n2.16807
  18. [18] S. S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type, Springer Briefs in Mathematics, Springer, New York, 201210.1007/978-1-4614-1779-8
  19. [19] S. S. Dragomir, P. Cerone, J. Roumeliotis, and S. Wang, A weighted version of Ostrowski inequality for mappings of Holder type and applications in numerical analysis, Bull. Math. Soc. Sci. Math., (1999), 301-314.
  20. [20] S. S. Dragomir and Th. M. Rassias, Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publishers, Dordrecht/Boston/London, 2002.10.1007/978-94-017-2519-4
  21. [21] S. S. Dragomir and S. Wang, A new inequality of Ostrowski’s type in norm and applications to some special means and to some numerical quadrature rules, Tamkang J. of Math., (1997), 239-244.10.5556/j.tkjm.28.1997.4320
  22. [22] S. S. Dragomir and S. Wang, Applications of Ostrowski’s inequality to the estimation of error bounds for some special means and some numerical quadrature rules, Appl. Math. Lett., (1998), 105-109.10.1016/S0893-9659(97)00142-0
  23. [23] S. S. Dragomir and S. Wang, A new inequality of Ostrowski’s type in norm and applications to some special means and to some numerical quadrature rules, Indian J. of Math., (1998), 245-304.
  24. [24] A. Guessab and G. Schmeisser, Sharp integral inequalities of the Hermite-Hadamard type, J. Approx. Th., (2002), 260-288.10.1006/jath.2001.3658
  25. [25] A. M. Fink, Bounds on the deviation of a function from its averages, Czechoslovak Math. J., No. 2, (1992), 298-310.10.21136/CMJ.1992.128336
  26. [26] A. Ostrowski, Uber die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert, Comment. Math. Hel., (1938), 226-227.10.1007/BF01214290
DOI: https://doi.org/10.1515/awutm-2016-0007 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 119 - 138
Submitted on: May 18, 2016
Accepted on: Jun 2, 2016
Published on: Sep 24, 2016
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2016 Silvestru Sever Dragomir, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.