[3] A. A. Shaikh, T. Basu, and K. K. Baishya, On the exixtence of locally ϕ-recurrent LP-Sasakian manifolds, Bull. Allahabad Math. Soc., 24(2), (2009), 281–295.
[7] E. Boeckx, O. Kowalski, and L. Vanhecke, Riemannian Manifolds of Conullity Two, World Scientific Publishing Co., Inc., River Edge, NJ, 1996.10.1142/3198
[10] F. Defever and R. Deszcz, On warped product manifolds satisfying a certain curvature condition, Atti. Acad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur., 69, (1991), 213–236.
[11] F. Gouli-Andreou and E. Moutafi, Two classes of pseudosymmetric contact metric 3-manifolds, Pacific J. Math., 239(1), (2009), 17–37.10.2140/pjm.2009.239.17
[12] F. Gouli-Andreou and E. Moutafi, Three classes of pseudosymmetric contact metric 3-manifolds, Pacific J. Math., 245(1), (2010), 57–77.10.2140/pjm.2010.245.57
[14] K. K. Baishya and P. R. Chowdhury, On generalized quasi-conformal N(k, μ)-manifolds, Commun. Korean Math. Soc., 31(1), (2016), 163–176.10.4134/CKMS.2016.31.1.163
[17] K. Sekigawa, On 4-dimensional connected Einstein spaces satisfying the condition R(X, Y) · R = 0, Sci. Rep. Nigaata Univ. Ser. A, 7, (1969), 29–31.
[27] O. Kowalski, An explicit classification of three dimensional Riemannian spaces satisfying R(X, Y) · R = 0, Czechoslovak Math. J., 46(121), (1996), 427–474.10.21136/CMJ.1996.127308
[33] R. Deszcz, S. Haesen, and L. Verstraelen, On natural symmetries, Topics in Differential Geometry, Ch.6, Editors A. Mihai, I. Mihai and R. Miron, Editura Academiei Române, 2008.
[35] S. Haesen and L. Verstraelen, Natural intrinsic geometrical symmetries, Symmetry, Integrability and Geometry: Methods and Applications, (SIGMA) 5, 086, 14 pp. Special Issue Elie Cartan and Differential Geometry, 2009.10.3842/SIGMA.2009.086
[40] Z. I. Szabő, Structure theorems on Riemannian spaces satisfying R(X, Y) · R = 0, J. Differential Geom, 17: I, The local version, (1982), 531–582.10.4310/jdg/1214437486