[1] I.K. Argyros, Computational theory of iterative methods, Studies in Computational Mathematics (15), C.K. Chui and L. Wuytack (Eds.), Elsevier Publ. Co., New York, U.S.A, 2007.
[2] I.K. Argyros, Y.J. Cho, and S. Hilout, Numerical methods for equations and its applications, CRC Press, Taylor and Francis, New York, 2012.10.1201/b12297
[4] I.K. Argyros and S. Hilout, Extending the applicability of the Gauss-Newton method under average Lipschitz-type conditions, Numer. Algorithms, 58, (2011), 23-52.10.1007/s11075-011-9446-9
[6] J. Chen, The convergence analysis of inexact Gauss-Newton methods for nonlinear problems, Comput. Optim. Appl.40, (2008), 97-118.10.1007/s10589-007-9071-7
[7] J. Chen and W. Li, Convergence of Gauss–Newton’s method and uniqueness of the solution, Appl. Math. Comput.170, (2005), 686–705.10.1016/j.amc.2004.12.055
[8] J. Chen and W. Li, Convergence behaviour of inexact Newton methods under weaker Lipschitz condition, J. Comput. Appl. Math.191, (2006), 143-164.10.1016/j.cam.2005.03.076
[10] J.E.Jr. Dennis and R.B. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations (Corrected reprint of the 1983 original), Classics in Appl. Math. (16), SIAM, Philadelphia, PA, 1996.10.1137/1.9781611971200
[14] W.C. Rheinholdt, An adaptive continuation process for solving systems of nonlinear equations, Polish Academy of Science, Banach Ctr. Publ.3, (1977), 129-142.10.4064/-3-1-129-142