[1] S. Abbasbandy, P. Bakhtiari, A. Cordero, J.R. Torregrosa, and T. Lotfi, New efficient methods for solving nonlinear systems of equations with arbitrary even order, Appl. Math. Comput., (to appear.)
[3] S. Amat, S. Busquier, and J.M. Guttiérrez, Geometric constructions of iterative functions to solve nonlinear equations, J. Comput. Appl. Math., 157, (2003), 197–205.10.1016/S0377-0427(03)00420-5
[4] S. Amat, S. Busquier, and S. Plaza, Dynamics of the King’s and Jarratt iterations, Aequationes. Math., 69, (2005), 212–213.10.1007/s00010-004-2733-y
[5] S. Amat, M.A. Hernández, and N. Romero, A modified Chebyshev’s iterative method with at least sixth order of convergence, Appl. Math. Comput., 206, (2008), 164–174.10.1016/j.amc.2008.08.050
[9] I.K. Argyros, Chen D., and Q. Quian, The Jarratt method in Banach space setting, J. Comput. Appl. Math., 51, (1994), 103–106.10.1016/0377-0427(94)90093-0
[11] A. Cordero and J.R. Torregrosa, Variants of Newton’s method using fifth-order quadrature formulas, Appl. Math. Comput., 190, (2007), 686–698.10.1016/j.amc.2007.01.062
[12] A. Cordero, J.R. Torregrosa, and M.P. Vassileva, Increasing the order of convergence of iterative schemes for solving nonlinear systems, J. Comput. Appl. Math., 252, (2012), 86–94.10.1016/j.cam.2012.11.024
[14] J.A. Ezquerro and M.A. Hernández, New iterations of R-order four with reduced computational cost, BIT Numer Math., 49, (2009), 325–34.10.1007/s10543-009-0226-z
[18] M. Kansal, V. Kanwar, and S. Bhatia, New modifications of Hansen-Patrick’s family with optimal fourth and eighth orders of convergence, Appl. Math. Comput., 269, (2015), 507–519.10.1016/j.amc.2015.07.101
[19] B. Neta, M. Scott, and C. Chun, Basins of attraction for several methods to find simple roots of nonlinear equations, Appl. Math. Comput., 218, (2012), 10548–10556.10.1016/j.amc.2012.04.017
[20] M.S. Petković, B. Neta, L.D. Petković, and J. Dzunić, Multipoint Methods for Solving Nonlinear Equations, Amsterdam, 2013.10.1016/B978-0-12-397013-8.00002-9
[22] W.C. Rheinboldt, An adaptive continuation process for solving systems of nonlinear equations, Mathematical models and numerical methods (A.N.Tikhonov et al. eds.) pub.3, 19, (1977), 129–14210.4064/-3-1-129-142
[23] J.R. Sharma, R.K. Guha, and R. Sharma, An efficient fourth-order weighted-Newton method for systems of nonlinear equations, Numer. Algor., 62, (2013), 307–323.10.1007/s11075-012-9585-7